next up previous contents
Next: Def. Up: Statistical preliminaries Previous: Random variables and random   Contents

Distributions

Let $ X$ be a random variable. We can determine a function $ F_X :$   {\NUMBERS R}$ \rightarrow$   {\NUMBERS R} (called the cumulative distribution - CDF - or simply distribution function of $ X$) given by

$\displaystyle F_X(x) := P(X \le x).$ (1.4)

Clearly if $ x < y$ then $ (X \le x) \subset (X \le y)$ and hence $ F_X(x) \le F_X(y)$, that is, $ F_X$ is monotonically increasing. Furthermore, when $ x \rightarrow +\infty$ the event $ (X \le x)$ tends to $ \Omega$ and when $ x \rightarrow -\infty$ the event $ (X \le x)$ tends to $ \emptyset$. Hence it is reasonable that

$\displaystyle \lim_{x \rightarrow -\infty} F_X(x) = 0, \quad \lim_{x \rightarrow +\infty} F_X(x) = 1.$ (1.5)

The plots of cumulative distribution functions have the general form shown in figures 1.1 or 1.2.

Figure 1.1: A continuous CDF
\includegraphics[width=10cm]{contcdf.eps}

Figure 1.2: A discrete CDF
\includegraphics[width=10cm]{disccdf.eps}

How can we determine the cumulative distribution function of a given random variable $ X$? We can sample values of $ X$, repeating $ N$ times the corresponding experiment, obtaining for each $ x \in$   {\NUMBERS R} the table of results:

Repetition Observation $ x_i \le x$?
1 $ x_1$ yes
2 $ x_2$ no
&vellip#vdots; &vellip#vdots; &vellip#vdots;
$ N$ $ x_N$ yes
Clearly

$\displaystyle F_X(x) \simeq { {\char93  \{ i \le N : x_i \le x \} } \over N}
$

if $ N$ is large, according to the frequency approach. The function $ F_e$ given by

$\displaystyle F_e(x) := { {\char93  \{ i \le N : x_i \le x \} } \over N},\;\;\; x \in$   {\NUMBERS R}

is called the empirical cumulative distribution function of $ X$. If $ x_1 \le \ldots \le x_N$, it has a plot of the form represented in figure 1.2.



Subsections
next up previous contents
Next: Def. Up: Statistical preliminaries Previous: Random variables and random   Contents
Mario Putti 2003-10-06