next up previous contents
Next: Expected Value Up: Distributions Previous: Def.   Contents

Examples of continuous distributions

A random variable has a cumulative distribution $ F_X(x)$ if $ P(X \le x) = F_X(x)$. Examples of cumulative distributions and their relative density functions are given below.

  1. Exponential density function:

    $\displaystyle f_X(x) = \left\{ \begin{array}{ll}
0 & \mbox{ if } x < 0, \\
\lambda e^{-\lambda x} & \mbox{ if } x \ge 0.
\end{array}\right.
$

    The random variable $ X$ has the cumulative distribution (shown in figure 1.3):

    $\displaystyle F_X(x) = \int_{-\infty}^x f_X(t) dt = (x\ge 0)
= \int_0^x \lambd...
.... -\frac{\lambda e^{-\lambda t}}{\lambda}\right\vert _0^x
= 1 - e^{-\lambda x}
$

    Figure 1.3: Exponential distribution.
    \includegraphics[width=10cm]{expdist.eps}

  2. standard Gaussian (Normal) distribution ($ N(0,1)$):

    $\displaystyle f_X(x) = {1 \over \sqrt{2 \pi} } e^{-x^2 /2} %%\label{eq:gaussf}
$

    and

    $\displaystyle F_X(x) = {1 \over \sqrt{2 \pi} } \int_{-\infty}^{x} e^{-y^2 /2} dy,
%%\label{eq:gaussCDF}
$

    called the standard Gaussian distribution.

    If $ t=(x-\mu)/\sigma$ then we have the Gaussian distribution with mean $ \mu$ and variance $ \sigma^2$ ( $ N(\mu,\sigma^2)$):

    $\displaystyle f_X(x) = {1 \over \sqrt{2 \pi} \sigma } e^{-\frac{1}{2}
(\frac{x-\mu}{\sigma})^2}
$

    and

    $\displaystyle F_X(x) = {1 \over \sqrt{2 \pi} \sigma } \int_{-\infty}^{x}
e^{-\frac{1}{2} (\frac{y-\mu}{\sigma})^2} dy
$

    Figure 1.4: Gaussian cumulative distribution
    \includegraphics[width=10cm]{gauss1.eps}

  3. Lognormal distribution:

    let $ y=\ln x$ and $ y\in N(\mu,\sigma^2)$ is a lognormal random variable. Then, since

    $\displaystyle \frac{dy}{dx} = 1 \qquad\qquad f_X(x) = f_Y(y) \frac{d y}{dx}
$

    $\displaystyle f_Y(y) = {1 \over \sqrt{2 \pi} \sigma_y }
e^{-\frac{1}{2} (\frac{y-\mu_y}{\sigma_y})^2}
$

    $\displaystyle f_X(x) = {1 \over \sqrt{2 \pi} \sigma_y x }
e^{-\frac{1}{2} (\frac{\ln x-\mu_y}{\sigma_y})^2}
$

    Figure 1.5: Lognormal cumulative distribution
    \includegraphics[width=10cm]{lognorm1.eps}


next up previous contents
Next: Expected Value Up: Distributions Previous: Def.   Contents
Mario Putti 2003-10-06