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Discretized diffusion equation

After discretization in the space, the PDE is converted in a system of ODEs like

P
∂u

∂t
= Hu + b

where P = I in FD discretization. Stiffness matrix H is symmetric definite
negative, capacity or mass matrix P is symmetric positive definite.
Finally discretization in time transforms the system of ODEs to a linear system of
size equal to the number of gridpoints to be solved at each time step.
Time discretization divides the time interval (0, T ] into subintervals of length ∆ti

so that solution in time is computed at tk =
Pk

i=1
∆i and uses Finite Differences

to approximate the time derivative.

For example applying the implicit Euler method (u ≈ u(tk+1) − u(tk)
∆tk

).

(I + ∆tkH)u(tk+1) = ∆tkPu(tk) + ∆tkb
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Eigenvalues and condition number of the Laplacian

The 2D FD discretization of the Laplace equation takes a general form (in the case
∆x = ∆y = h):

H =
1
h2

0

BBBBB@
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. . . . . . . . .
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0
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Eigenvalues of S and hence those of H are explicitly known:

λj,k(H) =
4
h2

sin2

„
jπh
2

«
+

4
h2

sin2

„
kπh
2

«
, j, k = 1, . . . , nx =

1
h
− 1
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Eigenvalues and condition number of the Laplacian

Theorem. The smallest and largest eigenvalues of H behave like:
λn = 2π2 + O(h2), λ1 = 8h−2 + O(1).
Proof.

λn =
8
h2

sin2

„
πh
2

«
=

8
h2

(hπ/2 + O(h3))2 = 2π2 + O(h2).

λ1 =
8
h2

sin2

„
nxπh

2

«
=

8
h2

sin2

„
π
2
− πh

2

«
=

=
8

h2
cos2

„
πh

2

«
=

8

h2
(1 − O(h2))2 = 8h−2 + O(1).

Corollary. The condition number of H behaves like

κ(H) =
4
π2

h−2 + O(1) (κ(H) =
3d
πd

h−2 when Ω ⊂ R
d)

Corollary. The number of iteration of the CG for solving Hx = b is proportional to

h−1 =

8
<

:

n 1D discretizations√
n 2D discretizations

3
√

n 3D discretizations
.
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Iterative methods on the diffusion equations

Again stationary iterative methods
1. Jacobi iteration. xk+1 = −D−1(L + U)xk + D−1b = EJxk + qJ .
2. Gauss-Seidel iteration.

xk+1 = −(D + L)−1Uxk + (D + L)−1
b = EGSxk + qGS

3. Acceleration of Gauss-Seidel =⇒ SOR method depending on ω ∈ R.

xk+1 = −(D+ωL)−1 ((1 − ω)D − ωU)xk+ω(D+ωL)−1
b = ESORxk+qSOR

Theorem. (Young & Varga). If all the eigenvalues of the Jacobi iteration matrix are
real then

1. λ(EGS) = λ(EJ)2

2. If in addition ρ(EJ) < 1 then there is an optimal value of ω:
ωopt =

2

1 +
p

1 − ρ(EJ)2
.

3. ρ(ESOR(ωopt)) = ωopt − 1
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Iterative method for the diffusion equation

Recall H =
1

h2
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Since D = diag(H) = −4h2I, then eigenvalues of EJ = I − D−1A are

λj,k(E) = 1 − sin2

„
jπh

2

«
− sin2

„
kπh

2

«

λmax(EJ) ≈ 1 − π2h2

2

λmax(EGS) ≈
„

1 − π2h2

2

«2

≈ 1 − π2h2

λmax(ESOR) ≈ 2
1 + πh

− 1 ≈ 1 − 2πh
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Iterative methods on the diffusion equations

What about CG? Asymptotically the reduction factor is µ =

√
κ− 1√
κ + 1

where

≈ κ(H) =
4
π2

h−2. Hence

µ ≈
2

hπ
− 1

2

hπ
+ 1

= 1 − 2hπ
2 + hπ

≈ 1 − πh

Asymptotic behaviour:
method error reduction factor type
Jacobi 1 − 5h2 sharp
Gauss-Seidel 1 − 10h2 sharp
SOR with ωopt 1 − 6h sharp
SD (no precond) 1 − 5h2 tight
CG (no precond) 1 − 3h tight
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Some results

2D discretization of the diffusion equation by FD, with h = 0.005, tol = 10−8

Results:
Method iterations CPU time comments
Jacobi 100000 262.01 ‖rk‖ > 10−6

Gauss Seidel 62207 186.36
SOR 817 2.68 ω = 1.969 ≈ ωopt

SOR 1819 5.98 ω = 1.95
SOR 1207 3.91 ω = 1.98

CG 357 1.61 no prec
CG 146 1.38 IC(0) prec

2D discretization of the diffusion equation by FD, with h = 0.0025, tol = 10−8

Results
Method iterations CPU time comments

SOR 1614 73.16 ω = 1.984 ≈ ωopt

CG 702 34.48 no prec
CG 244 22.84 IC(0) prec
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Results and Comments

Results with h = 0.00125, tol = 10−8

Method iterations CPU time comments
SOR 3572 605.40 ω = 1.992 ≈ ωopt

CG 1380 345.04 no prec
CG 451 199.35 IC(0) prec

Comments
Theoretically SOR(ωopt) is the fastest method with CG very close.
ωopt is always very difficult to assess.
Bounds on SOR is sharp while that on CG is tight.
CG can be preconditioned while SOR can not.
CG better than the estimates also when eigenvalues are spread into the
spectral interval.
Dependence of condition number on h−2 (and the number of iterations on
h−1) only alleviated by preconditioning.
SOR is dramatically dependent on ω. Solving the FD-discretized diffusion
equation, it takes advantage on the a priori knowledge of the spectral interval.
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Iterative methods for general systems

PCG is expected to converge only on spd matrices. Why? One reason is that
for non spd matrices it is impossible to have at the same time orthogonality
and a minimization property by means of a short term recurrence. PCG at
iteration k minimizes the error on a subspace of size k and constructs an
orthogonal basis using a short-term recurrence.
Extensions of PCG for general nonsymmetric matrices:
1. PCG method applied to the (spd) system AT Ax = AT b (Normal

equations). This system is often ill-conditioned. It is the case of
symmetric matrices where κ(AT A) = κ(A2) = (κ(A))2. Also difficult to
find a preconditioner if AT A could not be explicitly formed.

2. Methods that provide orthogonality + minimization by using a long-term
recurrence (GMRES)

3. Methods that provide (bi) orthogonality. Examples: BiCG, BiCGstab
4. Methods that provide some minimization properties. Examples: QMR,

TFQMR.
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The GMRES method

Given an arbitrary nonzero vector v, a Krylov subspace of dimension m is defined
as

Km(v) = span
`
v, Av, A2

v, . . . , Am−1
v

´

The GMRES (Generalized Minimal RESidual) method finds the solution of the
linear system

Ax = b

by minimizing the norm of the residual rm = b − Axm over all the vectors xm

written as
xm = x0 + y, y ∈ Km(r0)

where x0 is an arbitrary initial vector and Km is the Krylov subspace generated by
the initial residual.
First note that the basis

{r0, Ar0, A
2r0, . . . , A

m−1r0}

of Km is “little linearly independent”.
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Orthogonalization of the Krylov basis

Theorem. If the eigenvalues of A are such that |λ1| > |λ2| ≥ · · · then
Ak

r0 = v1 + O
“

|λ2|
|λ1|

”k
, with v1 the eigenvector corresponding to λ1.

To compute a really independent basis for Km we have to orthonormalize such vectors
using the Gram-Schmidt procedure.
β = ‖r0‖, v1 =

r0

β
DO k = 1, m

1. wk+1 = Avk

2. DO j = 1, k − 1

3. hjk = w
T
k+1

vj

4. wk+1 := wk+1 − hjkvj

5. END DO

6. hk+1,k = ‖wk+1‖; vk+1 = wk+1/hk+1,k

END DO

Once the Krylov subspace basis is computed, the GMRES method minimizes the norm of
the residual onto

x0 + Km = x0 +
m

X

j=1

zivi (1)
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Minimizing the residual

Theorem. The new vectors vk satisfy:

Avk =
k+1X

j=1

hjkvj , k = 1, . . . , m

Proof. In fact from step 4. of the Gram Schmidt algorithm we have

wk+1 = Avk −
kX

j=1

hjkvj

Now substituting wk+1 = hk+1,kvk+1 we obtain

hk+1,kvk+1 = Avk −
kX

j=1

hjkvj

and the thesis holds.
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Minimizing the residual

Now define
Vm = [v1, v2, . . . vm]

and Hm = (hjk). The statement of the theorem reads

AVm = Vm+1Hm

Hm is a rectangular m + 1 × m matrix. It is a Hessenberg matrix since it has the
following nonzero pattern:

Hm =

0

BBBBBB@

h11 h12 . . .
h21 h22 h23 . . .
0 h32 h33 h34

0 0 . . . . . .
0 0 0 hm,m−1 hmm

0 0 0 0 hm+1,m

1

CCCCCCA

Iterative Methods – p.14/31



Minimizing the residual

=

A Vm = Vm+1 Hm
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Minimizing the residual

Now we would like to minimize ‖rm‖ among all the xm:

xm = x0 +
mX

j=1

zivi

or
xm = x0 + Vmz, z = (z1, . . . , zm)T

Now

rm = b − Axm = b − A (x0 + Vmz) =

= r0 − AVmz =

= βv1 − Vm+1Hmz =

= Vm+1 (βe1 − Hmz) (2)

where e1 = [1, 0, . . . , 0]T .
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Minimizing the residual

Recalling that V T
m+1Vm+1 = Im+1:

‖rm‖ =
p

rT
mrm =

=
q

(βe1 − Hmz)T V T
m+1Vm+1 (βe1 − Hmz) =

=
q

(βe1 − Hmz)T (βe1 − Hmz) =

= ‖ (βe1 − Hmz) ‖ (3)

and hence z = argmin‖βe1 − Hmz‖.
Comments:

Hm has more rows than columns then Hmz = βe1 has (in general) no
solutions.
Minimization problem z = argmin‖βe1 − Hmz‖ is very small m = 20, 50, 100
as compared to the original size n. Computational solution of this problem
will be very cheap.
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Least square minimization

Any (even rectangular) matrix H can be factorized as a product of an
orthogonal matrix Q and an “upper triangular” matrix R (known as QR
factorization.
When H is not square the resulting R has as many final zero rows as the
gap between rows and columns.
Let us now factorize our Hm as: Hm = QR (computational cost O(m3)).
Then, in view of the orthogonality of Q:

min ‖βe1 − Hmz‖ = min ‖Q
“
βQT

e1 − Rz
”
‖ = min ‖g − Rz‖

where g = βQT e1.
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End of minimization

Matrix R takes on the form:

R =

0

BBBB@

r11 r12 . . .
0 r22 r23 . . .

. . . . . . . . .
0 rmm

0

1

CCCCA
(4)

The solution to min ‖g − Rz‖ is simply accomplished by solving R̃z = g̃

where R̃ is obtained from R by dropping the last row and g̃ the first m
components of g.
This last system being square, small, and upper triangular, is easily and
cheaply solved.
Finally note that min ‖rm‖ = |gm+1|.
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Algorithm

ALGORITHM: GMRES

Input: x0, A, b, kmax, toll

r0 = b − Ax0, k = 0, ρ0 = ‖r0‖, β = ρ0, v1 =
r0

β

WHILE ρk > toll ‖b‖ AND k < kmax DO

1. k = k + 1
2. vk+1 = Avk

3. DO j = 1, k

hjk = vT
k+1vj

vk+1 = vk+1 − hjkvj

END DO

4. hk+1,k = ‖vk+1‖
5. vk+1 = vk+1/hk+1,k

6. zk = argmin‖βe1 − Hkz‖
7. ρk = ‖βe1 − Hkzk‖

END WHILE

xk = x0 + Vkzk
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Practical GMRES implementations.

GMRES is optimal in the sense that it minimizes the residual over a
subspace of increasing size (finite termination property).
GMRES is a VERY computationally costly method.
1. Storage: It needs to keep in memory all the vectors of Krylov basis.

When the number of iterations becomes large (order of hundreds) the
storage may be prohibitive.

2. Computational cost. The cost of a Gram-Schmidt orthogonalization
increases with the iteration number (O(mn)) so again problems arise
when the number of iteration is high.

Practical implementations fix a maximum number of vectors to be kept in
memory, say p. After p iterations, xp is computed and a new Krylov
subspace is begin constructed starting from rp.
In this way however, we loose optimality with consequent slowing down of
the method.
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Convergence

Assume for simplicity that A is diagonalizable that is

A = V ΛV −1

where Λ is the diagonal matrix of eigenvalues and columns of V are normalized
eigenvectors of A. Then

‖rk‖ = min
Pk

‖V pk(Λ)V −1‖ · ‖r0‖ ≤ κ(V )min
Pk

‖pk(Λ)‖ · ‖r0‖

or
‖rk‖
‖r0‖

≤ κ(V ) min
Pk

max |pk(λi)|

Matrix V may be ill-conditioned
We cannot simply relate convergence of GMRES with the eigenvalue
distribution of A.
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Preconditioning

Also for general systems preconditioning is premultiplying the original system
by a nonsingular matrix.
Here preconditioning, more than reducing condition number of A is aimed at
clustering eigenvalues away from the origin.
Common general preconditioners.
1. Diagonal: M = diag(‖Ai‖), with Ai the ith row of A.
2. ILU decomposition (based on pattern and/or on dropping tolerance).
3. Approximate inverse preconditioners

Computational cost. Instead of applying A one should apply M−1A to a
vector (step 2. of algorithm) as

t = Avk, Mvk+1 = t
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Numerical example

Convergence profile (semi-logarithmic plot) of GMRES as applied to a very small
(n = 27) matrix with two preconditioners and some choices of the restart
parameter.
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Other iterative methods for nonsymmetric systems

They are based on a fixed amount of work per iteration (short term
recurrence)
No a priori theoretical estimates on the error.
Possibility of failure (breakdown) that can be alleviated through the use of
look-ahead strategies.
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The Lanczos method.

It is useful to underline connection between symmetric and nonsymmetric
problems.

1. GMRES for spd matrices produces a tridiagonal matrix instead of an
Hessenberg one (a symmetric Hessenberg is tridiagonal). This means that
there is a three-term recurrence which implements Gram-Schmidt
orthogonalization on a Krylov subspace generated by an spd matrix.

2. For A spd V T
m AVm = Tm and it can be proved that the extremal eigenvalues

of Tm converge quickly to the extremal eigenvalues of A. Moreover there is a
strict connection between the Lanczos process and the CG method (entries
of Tm can be computed from CG iterates). Knowing approximately the
largest and the smallest eigenvalues is useful for an appropriate exit test for
the CG method (recall 1st lecture on reliability of exit tests).

3. If A is nonsymmetric the two-sided Lanczos method can be employed to
construct a biorthogonal basis for the Krylov subspaces corresponding to A

and AT by using a short term recurrence.
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The Biconjugate Gradient method (BiCG).

Based on two-sided Lanczos process:
1. Given an arbitrary cr0 non orthogonal to r0, it constructs two sets of vectors

v1, . . . , vn ∈ K(A, r0) and w1, . . . , wn ∈ K(AT , cr0) s. t. vT
i wj = 0, i *= j.

In matrix form

AVk = Vk+1Tk+1,k, AT Wk = Wk+1
bTk+1,k, V T

k Wk = Ik

2. Write xm = x0 + vkyk. From the several choices for vector yk BiCG forces
rk = r0 − AVkyk to be orthogonal to Wk. This leads to the equation

W T
k r0 − W T

k AVkyk = 0

By noticing that W T
k AVk = Tk and that W T

k r0 = βe1,β = ‖r0‖, equation for
yk becomes

Tkyk = βe1

3. Practical implementation of BiCG algorithm implicitly performs an LDU
factorization of matrix Tk (Also CG for spd matrices is equivalent to Lanczos
process with LDLT factorization of Tk),
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BiCG Algorithm

ALGORITHM: BICONJUGATE GRADIENT

Input: x0, cr0, A, b, kmax, tol
r0 = p0 = b − Ax0, k = 0, cp0 = cr0

WHILE ‖rk‖ > tol ‖b‖ AND k < kmax DO

1. z = Apk, u = AT cpk

2. αk =
rT

k crk

zT pk

3. xk+1 = xk + αkpk

4. rk+1 = rk − αkz r̂k+1 = rk − αku

5. βk =
rT

k+1rk+1

rT
k rk

6. pk+1 = rk+1 + βkpk , p̂k+1 = r̂k+1 + βk cpk

7. k = k + 1

END WHILE
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BiCGstab

Drawbacks of the BiCG method:
1. Need to implement a matrix vector product also for the transpose of the

matrix (this can be a problem: sometimes the matrix is not available explicitly
but only the result of its application to a vector)

2. No local minimization property fulfilled in BiCG. This leads to sometimes
large oscillations in the convergence profile.

First CGS (Conjugate Squared method) avoids using AT then a subsequent
improvement: the BiConjugate Gradient stabilized (BiCGstab) method is aimed at
avoiding such an erratic behavior trying to produce a residual of the form

rk = Ψk(A)φk(A)r0

where Ψk(z) =
kY

j=1

(1 − ωjz) and the ω’s are chosen to minimize

‖rj‖ = ‖(1 − ωjA)Ψj−1(A)φj(A)r0‖
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BiCGstab

ALGORITHM: BICGSTAB
Input: x0, A, b, kmax, toll

r0 = b − Ax0, k = 0, choose r̂0 s. t. r̂T
0 r̂0 $= 0

ρ0 = α0 = η1 = 1;

WHILE ‖rk‖ > toll ‖b‖ AND k < kmax DO

1. k = k + 1

2. ρk = r̂T
0 rk

3. βk = (ρk/ρk−1)(αk−1/ηk)

4. pk = rk + βk(pk−1 − ηkvk−1)

5. vk = Apk

6. αk = ρk/r̂T
0 vk

7. s = rk − αkvk

8. t = As

9. ηk+1 = sT t/tT t

10. ck+1 = ck + αkpk + ηk+1s

11. rk+1 = s − ηk+1t

END WHILE
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