Groundwater Hydrology - Homework 2

Due date: Nov. 26, 2012

In a confined, homogeneous and isotropic aquifer the following steady piezometric heads have
been measured in three different wells A, B and C:

well A B C
East coord. (m) 0 300 0
North coord.(m) | O 0 200
head (m) +10 +11.5 +84

The aquifer is characterized by a thickness and a hydraulic conductivity equal to 20 m and 15 m/day,
respectively.

Assuming a planar piezometric surface, determine:
a) direction and magnitude of the hydraulic gradient /;

b) total rate that flows through the aquifer (per unit length in the direction orthogonal to the
maximum gradient);

c¢) Darcy’s velocity at point P=(100 m, 100 m).

Solution

a) The scenario is shown in the next plot:

N
200 @ (+8.4 m)
° (+11.5m
(+10 m) 300 E

Since the piezometric surface is a plane, thus with a constant slope, we calculate the compo-
nents of the gradient along East and North from the well couples A-B and A-C to obtain:

oh  11.5— 10 ,
I = — = ——— = 1 -3
Bt = By 500 010
Oh  84—10
INopa = 5~ = —5—— = —8x 1077
Nerd = 5 = 200 %



Hence I = /I3, + I%,,4 = 9.43 x 1073 Direction 6 is given by:

0 = arctan ( L5t ) = 122° = 2.13rad

Nord

b) Total flow rate is:
Q=kxbxIx1=28m?day

c¢) Darcy’s velocity is:

v=FkxI=15x9.43 x 107® = 0.141 m/day



2. Figure 1(a) represents maps of the contour lines of piezometric head drawdown at a given time ¢*.
They are related to water extraction from a well at a given flow rate () in two different aquifers
having the same transmissivity. Which of the two aquifers is characterized by a larger storativity
and why?

Figure 1(b) represents maps of the contour lines of piezometric head as measured in two confined
aquifers under steady state conditions. Evaluate the ratio between the incoming water flux from the
left boundary in the two different cases, assuming that the aquifers have the same hydrogeological
characteristics.

Solution

Fig (a): The isoline -2 m in the left figure is farther away from the well with respect to the corre-
sponding isoline in the right figure. Note that, with the hypothesis of equal time, hydraulic
conductivity and flow rate, the head gradient at the well must be also equal in the two config-
urations. Qualitatively we can draw the following plot:

dx

r

SX

We can see that the transient is slower in the right plot, (higher curve) which is thus charac-
terized by a higher storage coefficient.

In other words, since a higher storage coefficient is related to a larger drainable water volume
(per unit time), for an equal flow rate the pressure decline will propagate slowlier in the right
case.

Fig (b): The contour line -10 m is located at a distance of 1 m and 3 m from the left boundary in
the left and right figures, respectively. The incoming fluxes can be estimated as:

10 10
Qleft = KT Qright = K?
Hence the flux of the left figure is three times larger with respect to the case depicted in the
right figure.



3. Figure 2 shows a contour representation of the piezometric surface for a confined aquifer discharg-
ing into a river. Measurements of hydraulic heads made at 17 monitoring wells are shown in the

following Table:

Monitoring Piezometric

Monitoring Piezometric

Monitoring Piezometric

Well Head (m asml) | Well Head (m asml) | Well Head (m asml)
1 305.21 7 308.56 13 309.82

2 302.91 8 304.50 14 311.52

3 303.13 9 308.56 15 306.30

4 303.90 10 308.21 16 307.18

5 305.13 11 307.21 17 303.30

6 306.90 12 310.52

The aquifer has an average thickness of 16 m and is considered as homogeneous and isotropic,
with a porosity of 0.29 and a hydraulic conductivity of 4.3 x 10~% m/s. Assuming steady-state

conditions, estimate:

(a) the average hydraulic gradient in the aquifer;

(b) the rate of water discharge from the aquifer to the stream;

(c) the times it would take to a hypothetical tracer injected in Well # 16 to reach the river.

Solution

(a) There are many ways to solve this problem. One is to find an average gradient by fitting a
plane through the data points by means of least square methods. This can be done by means
of the followin developments.

Given N observations z;, y;, 2;,7 = 1,..., N, we try to approximate these data with a plane.
The equation for a plane (linear function in 3D) is:

We define the sum of squares as

S(a,b,c) => N lax; + by; + ¢; — z)

flz,y) =z=ax+by+c

i=1

The determination of the coefficients a, b, c proceeds by minimizing this function with respect
to these coefficients, i.e., by setting the partial derivatives to zero as follows:
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This leads to the following linear system:

N .2 N N
Z]\Z}:1 x; 217\71 XTiYi 2?1 Z; a
2
=1 Tl s Yi s Yi b
N N
i=1Ti i=1Yi N &

The following Matlab (Octave) code can be used for this:

#! /usr/bin/octave -gf

h_coord=load (' hw2-ex3.dat’);
x=h_coord(:,1);
y=h_coord(:,2);
h=h_coord(:, 3);

one=ones (n, 1) ;

all=dot (x, x);
azz=dot (y,v);
a33=n;

al2=dot (x,V);
a2l=al2;
al3=dot (x, one) ;
a3l=al3;
a23=dot (y,one) ;
a32=a23;

bl=dot (x,h);
b2=dot (y,h);
b3=dot (h, one) ;

A=[ all, al2, al3; az2l, az22, a23; a3l,

b=[ bl; b2; b3]

A\Db

Where the file hw2-ex3.dat is:

1026.99 878.496666667
1139.06466667 1454.15133333
1620.36266667 1820.54333333
2626.598 1775.092
1816.60533333 1494.906
1536.41933333 1168.87133333
2356.60066667 1061.89066667
2300.56333333 1601.886

N
Zi:1 Xizq
N
= 27;21 Yizi

N
i=1 i

a32, a33]

305.
302.
303.
303.
305.
306.
308.
304.

21
91
13
90
13
90
56
50



1755.474 791.893333333 308.56

1403.968 679.819333333 308.21
848.69 542.273333333 307.21
2224.14866667 476.047333333 310.52
2692.82333333 796.988 309.82
2458.486 633.970666667 311.52
2718.29533333 1377.73733333 306.3
2061.13133333 1230.00266667 307.18
2260.56333333 1945.092 303.30

The results from running the code is:

ans =

2.0986e-03
-5.3675e-03
3.0881le+02

which gives an average gradient:

i = \/(—5.3675 x 10-3)2 4 (2.0986 x 10-3)2 = 5.763 x 10~

Another way is to fit % g—Z as 1D linear functions using least squares (this is the less accurate,
obviously, and if the data are clustered in some strange way (not this case) we can get large

erTors.
Another way is to set up streamlines, as shown in the figure:
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and calculate gradients with that. We obtain the following table:

Streamline | [ (m) | Ah (m) Ah/l
1 850 -6 —7.06 x 1073
2 1050 -6 —5.71 x 1073
3 1100 -6 —5.45 x 1073
4 1500 -8 —5.33 x 1073
5 1400 -8 —5.71 x 1073

Average gradient i = 5.86 x 1073

In this case, all the methods give similar results.



(b) From the last technique we obtain:

3

g=—b-K-i16=-43x 107586 x 10~% = 4 x 10— — 3.48
sm day m

m?

We could have used the gradient as calculated from the 303 contour using again streamlines,
and we would have obtained a slightly larger q.

(c) Along the streamline, the average gradient is ¢ ~ (307 — 302)/1100 = 0.0045. Then we
have:

K
vy = ——i=6.74 x 107° m/s
w
Thus the time for the particle to travel from well 16 to the stream is

d —6 8
t=—=1100/6.74 x 107° = 1.63 x 10° s = 5.2 years

S



4. Given the unconfined aquifer of Figure 3.

(a) Calculate the flow rate (), in the well of Figure 3 (left) assuming steady state flow and radial
symmetry.

(b) Under the same assumptions, calculate the flow rate (), in the well in Figure 3 (right).

Solution

(a) Assuming Dupuit-type flow, we can write the flow equation of the aquifer in steady state
conditions and homogeneous aquifer as:

d (L dh) _1d (1 .dn*\
rdr " dr ] rdr 2rdr N

with boundary conditions:

2
Q = m"de(h)
dr

h = H r=r,

at the well(r = r,,)

Itegrating this equation once we obtain:

rdh®

2dr
ie.: p

d(h?) = a—

() = a”
or:

R*(r) = alnr +b

From the first boundary condition, for r = r,,:

Q@
=7K = = —
Q=nKa a K
From the second conditions, for r» = r,:
H2:£(1nre+b = b:H2—73(1n7"e

The solution of the problem is then:

Thus we can write:

Q = 7K (h2(ry) — H?)/(In %) = 4748m® /day

Te



(b) The heterogeneities are parallel to the flow, thus we use weighted arithmetic mean:

—  30-40+15-20
r + — 33.33 m/day
45
Thus we have: 4748 - 33.33
Q= ——"" — 3956.3m"/day

40

A more accurate solution would be to split up the aquifer in two parts: the lower 15 m can be
considered as a confined aquifer, the upper 30 m as an unconfined aquifer. Correspondingly
we have:

oh Ooh
Qw = 27r [Kzaa?a + Kl(h — (Z)ar‘|

Integrating between » = r,, and r = r. and between h = h,, and h = H we obtain:
(ry =03m, 7. =300m, h, = 42m, H = 75 m):

re | H H
Qw/ S dr =2 [Kga dh + K1/ (h — a)dh]
7 ho

w T haw
from which:
27 K 2 2
@ = {Kaaltt = hu) + 2 [(H = 0 = (b~ 0)?]}
27 40

= ——120-15- —(30%2 =2 2}
hquOO{0 5B+ 2<30 )

= 3929m®/day

As we can see the differences between the two methods are very small and are due to the
fact that the mean conductivity does not take into account the changes in head (and thus
transmissivity K h) close to the well.

10



5. Given the unconfined aquifer of Figure 4, assuming a uniform recharge flux e, calculate:

(a) the mathematical model governing this problem assuming that Dupuit assumption holds and
that the hydrogeological characteristics of the aquifer are constant (include initial and bound-
ary conditions);

(b) the function h(z) describing the water table in steady state conditions. Assume: H; = 20 m,
Hy = 10 m, K = 5 x 1073 m/s, recharge ¢ = 7.2 mm/h, aquifer length L = L, + L2 =
2000 m.

(c) A ditch is to be excavated (along the y axis) in the mid section of the aquifer. What is
the maximum depth of the ditch so that no pumping is required for its excavation. (Make
approprite assumptions if necessary.)

Solution

(a) Using Dupuit assumption the 1-D steady state equation of water flow in an unconfined aquifer
subject to a recharge flux e is:

0 oh
Kh =
ox ( (995) ¢
Integration of this equation leads to:
oh
K ha—x = —er+d)
Oh? e N
or 2K rTa
R*(z) = %xz + x4
(b) Using the boundary conditions 4(0) = H; and h(L) = H,, with L = L; 4+ Lo, we obtain:
HZ — H?
\/ K 4= L 7 L+ H?

where the convention is that a negative e corresponds to recharge. In our case we have:

72103 102 — 202
h(z) = : 2 2000z) + —— " + 202
() \/5 1073600 " D+ 500 ¢t

= \/—0.0004(332 —2000z) — 0.15x + 400
(c) calculate the value of = at which the water table has a zero slope:
1,00 _ ol
2 0x Or
that yields: z* = 812.5 m. At that distance we have the maximum height of our water table,
which we can set equal to the maximum excavation elevation required by the question:

0 = —0.0008z + 0.65

h(812.5) = /—0.0004(812.52 — 2000 - 812.5) — 0.15 - 812.5 + 400 = 25.77 m

The maximum excavation depth is thus 30-25.77=4.23 m

11



6. Given the confined aquifer of Figure 5, determine the flow rate (per unit width in the direction
orthogonal to the drawing) and draw an accurate plot of the behavior of the piezometric head
between the two wells.

Solution The flowrate per unit width can be calculated using an average conductivity: since the
heterogeneities are orthogonal to the flow, we need to use the harmonic mean:

Ah
@ =B

where (L = > L;):
L L  Ls &

oy KR R,
200 800 300
= — —_— — =1
10 + 0 + 20 3m/day

and thus:

1’1’13

4
=2
1300 day m

@ =50 * 13 %

The flowrate is constant in every section, so we have:

AH,
Q= Tz‘Ti 1=1,2,3
from which:
OL, 2% 200
AH, — _ — 0.2
! T, ~ 5040 m
OL,  2%800
AH _ — 3.2
2 T, 50 %10 m
OLs 2% 300
AH _ — 0.6
3 T, 50%20 m

12



7. The aquifer system in Figure 6 is formed by two confined aquifers characterized by transmissivities
T7 and T5, respectively. Water enters in the upper right portion of the system and exits as a spring
in the lower left. Determine the head in the observation well M and calculate the conditions under
which well M is artesian (water flows naturally out of the well).

Solution

(a)

(b)

This aquifer, being confined, can be treated as a planar aquifer with lengths equal to I; =
L/ cosfandly = Ly/ cos a. Then we can define two linear solutions in the two subdomains
and impose the compatibility conditions (we put the zero of the z-axis at point M):

hi(z) = az+b
ha(x) = agx + by
hi(=l) = H
ho(ly) = Hy
hi(0) = ho(0)(= Hps which is unknown)
GRCTRI L T

From the last equations, and noting that for a linear function the gradients are constant and
can be calculated using Hy, H,;, and H,, we can write:
dhy H, — H, dhs Hy — Hy

R s e Ut Y s Rl R
Vde R 2 dx 2,

from which we obtain:
B TloHy + Tl Hy

H, =
Tllg + T2l2
Now, since L; = [y cos 3 and Lo = [y cosa, we also have that H; = L;tan( and Hy =
L, tan «. Thus we can write:

Ho - Tisin 8+ T5sin «

Ty cos B T5 cos
Ly + Lo

The top of well shown in the Figure (point M) is at an height given by the linear interpolation

between H; and Hs, i.e.,
H, — Hy

H =—L1+H
well Ll —|—L2 1+ Hy

To calculate the conditions for the aquifer for beeing artesian, we impose that Hy; > Hyq1p-
The limiting condition is when:

LoHy + LiHy  TyloHy + 1ol Ho

Li+Ly, T+ Tyl

which is verified for example when:

TQll = L1
Tllg = L2

13



8. Figure 7 reports two different configurations of wells and pizeometer in a confined aquifer, char-
acterized by a hydraulic conductivity K = 10 m/day, an elastic storage coefficient S, = 10° m~!
and a thickness B=10 m. From the wells, water is extracted at the following rates: Q; = 15 m3/day
for 50 days; @, = 10 m*/day for 20 days; Q, = 20 m?®/day for the next 30 days; Q3 = 20 m*/day
for 50 days. Calculate the drawdown in the piezometer I at ¢ = 50 days for the two distinct
configurations (a) and (b).

Solution
T = 100m?/day S=10"
a)
4Tt 4-100 - 50
Ul = 5= = 100z 10t = 0.2 x 10° > 100  apply Cooper-Jacob
1 ( Tt )
Ah, = In(2.25—— ) =0.111
Pl AnT 57“25 0 o
4Tt 4-100-20
Upp = = = 0.167 x 10° > 100 apply Cooper-Jacob

r2S 702104
Ahp?,50days - AthA,SOdGLys + AhQQB,?)Odays; Q2A — 10m3/daY7 QQB =20-10 = 10m3/daY7
tQA = 50day, tQB = 30day

Q2.4 ( Tt2A> Q2.8 ( TtQB)
= “In (2.2 “In (2.2 =
47T . g r28 + 47T . g r2S

= 0.080 +0.076 = 0.156m

Ahyy; = 0.111+ 0.156 = 0.267m

b)
ATt
U = 25 = 8.89 x 10° > 100 apply Cooper-Jacob
r
Q3 ( Tt )
Ah = —In(225— ) =0.1
1T 2 57"23 0.136 m

14



9. From well P of Figure 8 a flow rate of 10 m?3/day is extracted from a confined homogeneous and

isotropic aquifer characterized by a thickness B = 20 m, a hydraulic conductivity =500 cm/day

and a specific elastic storage Sy = 5 x 107 m~L,

(a) how much is the drawdown in piezometer W after 10 days assuming the aquifer has an infinite
horizontal dimension?

(b) how much is the drawdown in piezometer W after 10 days if the boundary AB shown in the
figure is assumed to be impermeable?

(¢) how much is the drawdown in piezometer W after 10 days if the boundary AB shown in the
figure is assumed to be subject to a recharge flux so that a zero drawdown can be assumed?

Solution
(a) The dimensionless Theis parameter w is:

4Tt
U= ——
r2S

where =100 m, T' = kb=100 m?/day and S = S,b=10"%. We thus obtain u = 4000 > 100.
Applying Cooper-Jacob approximation, the drawdown s is:

Tt
sp = 47?Tln (2.25TQS> =6.1cm

(b) Applying the superposition principle, and the image well technique we have that an imper-
meable boundary is (for symmetry reasons) equal to an image well P; located in a simmetric
position with respect to P the other side of the boundary and with Q p, = ) p. Thus the draw-
down can be calculated as the sum of the two contributions s;,; = sp+sp, (Where sp is calcu-
lated above) using the distance between well 1 and well P, equal to \KALOO2 +100%) = 412.3

m, to obtain sp, =3.9 cm and s;,; =6.1+3.9=10 cm.

(c) Using the same technique as before, we need to put an image well in a symmetric location
but now ()p, = —()p. Thus the total drawdown is in this case s;,; =6.1-3.9=2.2 cm

15
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Figure 3: Exercise 4. the unit m /g is in Italian; it means m/day.
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Figure 4: Exercise 5
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Figure 5: Exercise 6; the unit m/g is in Italian; it means m/day.
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Figure 6: Exercise 7
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Figure 7: Exercise 8
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Figure 8: Exercise 9.
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