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Chapter 1

Statistical preliminaries

1.1 Random Variables

1.1.1 The concept of Probability

A general model for an experiment could be constructed in the following
manner:

1. Take a non-empty set Ω, in such a way that each ω ∈ Ω represents
a possible outcome of the experiment.

2. To the “greatest possible number” of subsets A ⊂ Ω, each subset
A representing a possible event, associate a number P (A) ∈ [0, 1],
called the probability of such event.

An event A has been observed when we perform a “realization of the
experiment” and an outcome ω ∈ A is obtained. The probability of the
event can be defined as follows (“frequentist approach”):

Repeat the experimentN times, withN large, and observe the results.
If event A has occurred NA times then

fa =
NA
N

1
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is the relative frequency of event A and is an approximation of the prob-
ability P (A) of occurrence of A. Then P (A) can be defined as:

P (A) = lim
N→∞

NA

N

In practice the probability is a function relating the elements of the family
of events to the interval [0, 1]:

P : A → [0, 1]

where A ⊂ Ω and the following properties hold:

P (Ω) = 1

P (
∞∑
n=1

An) =
∞∑
n=1

P (An)

for any family A = {An} of events for which An
⋂
Am = ∅ if n 6= m.

In mathematical terms the ordered triple

(Ω,A, P ) (1.1)

is called a probability space if

• Ω is a non-empty set (the space of outcomes),

• A is a family of subsets of Ω (the family of events),

• P : A → [0, 1] is a probability.

The structure (1.1) constitutes the basis for a mathematical model of an
experiment, keeping in mind the non-reproducibility which is often en-
countered in empirical sciences. For instance, in a coin toss the outcomes
are “heads” (H) or “tails” (T ) and we can take

Ω = {H,T}

All possible events are elements of

A = {∅, {H}, {T},Ω}
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Lastly, if the coin is “fair”, intuitively the probability P is given by

P (∅) = 0 P (Ω) = 1

P (H) = 1/2 P (T ) = 1/2

All the properties of probability, without exception, are derived from the
mathematical model (1.1).

1.1.2 Random variables and random functions

Let us start with an example related to groundwater hydrology.

• We wish to study the steady state response of a confined heteroge-
neous aquifer, under conditions of water withdrawal. We measure
the hydraulic conductivity at various points in the aquifer for con-
fidence in the results. Hence it is convenient to consider modeling
the aquifer as a medium with random characteristics.

To this aim, we perform a pumping test: withdraw water from a well at
specified rates and observe water drawdown at different wells. By means
of pumping test theory, calculate transmissivities at the different well
locations (points in space). (Note that the number of observation wells
is generally small due to the high drilling costs).
The possible outcomes in our experiment (i.e. the corresponding pro-

files of the transmissivities) are functions which assume a value at each
point in the space which we are working in. Let S ⊂ R3 be the math-
ematical representation of this space (the domain of the aquifer). Then
the elements of Ω are the functions ω : S → R where

ω(x) = transmissivity at point x (ω ∈ Ω).

and we assume that these functions are continuous (Ω = C1(S)). A
more classical notation for the random transmissivity at point x when
the profile is ω would be:

T (xω) ≡ ω(x)
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Ω is made up of continuous functions. Let h : S → R be the piezometric
head (h ∈ C2(S)). The aquifer is confined and the steady state mass
balance equation together with Neumann (no flow) boundary conditions
is:

∂

∂xi

(
Tij(~x, ω)

∂h

∂xj

)
= q(x) in S (1.2)

∂u

∂n
= 0 in ∂S (1.3)

where q(x) represents the rate of water withdrawal or injection per unit
time and unit volume.
The solution to this boundary value problem is a function

h : S × Ω→ R

For each point x ∈ S we determine a function ω 7→ h(x, ω) which
represents the piezometric level at the point x if the transmissivity rofile
in the medium is ω ∈ Ω.
The piezometric head is a random function of the random variable

ω. Note that a random variable (RV) is also a function from the sample
set to the real axis (ω : S → R), while the random function h(x, ω) is
a function S × Ωh → R. In other words, h(xo, ω) and h(x1, ω) are two
random variables if xo 6= x1; h(x, ωo) is a realization of h(x, ω), i.e. the
profile (function of x) of T when (among all possible observations) only
ωo(x) is assumed.
In general we are interested in real functions X defined in the space

of outcomes, and in associating a probability with all the events of the
type

• The value of X is larger than b ∈ R.

• The value of X is not larger than a ∈ R.

• The value of X falls in the interval [a, b], etc.

These events will be denoted by means of the symbols (X > b), (X ≤ a),
(a ≤ X ≤ b), etc.
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0

Figure 1.1: A continuous CDF

1.2 Distributions

Let X be a random variable. We can determine a function FX : R → R
(called the cumulative distribution – CDF – or simply distribution
function of X) given by

FX(x) := P (X ≤ x). (1.4)

Clearly if x < y then (X ≤ x) ⊂ (X ≤ y) and hence FX(x) ≤ FX(y),
that is, FX is monotonically increasing. Furthermore, when x→ +∞ the
event (X ≤ x) tends to Ω and when x → −∞ the event (X ≤ x) tends
to ∅. Hence it is reasonable that

lim
x→−∞

FX(x) = 0, lim
x→+∞

FX(x) = 1. (1.5)

The plots of cumulative distribution functions have the general form
shown in figures 1.1 or 1.2.

How can we determine the cumulative distribution function of a given
random variable X? We can sample values of X, repeating N times the
corresponding experiment, obtaining for each x ∈ R the table of results:
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k
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Figure 1.2: A discrete CDF

Repetition Observation xi ≤ x?
1 x1 yes
2 x2 no
...

...
...

N xN yes

Clearly

FX(x) '
#{i ≤ N : xi ≤ x}

N
if N is large, according to the frequency approach. The function Fe given
by

Fe(x) :=
#{i ≤ N : xi ≤ x}

N
, x ∈ R

is called the empirical cumulative distribution function of X. If
x1 ≤ . . . ≤ xN , it has a plot of the form represented in figure 1.2.

Def.

A random variable X is said to be continuous if its cumulative distri-
bution function has the form

FX(x) =

∫ x
−∞

fX(ξ)dξ
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fX is called the probability density function (briefly density)
of X.

Clearly

fX(x) ≥ 0,

∫ +∞
−∞

fX(ξ)dξ = 1

for any density function fX .

1.2.1 Examples of continuous distributions

A random variable has a cumulative distribution FX(x) if P (X ≤ x) =
FX(x). Examples of cumulative distributions and their relative density
functions are given below.

1. Exponential density function:

fX(x) =

{
0 if x < 0,
λe−λx if x ≥ 0.

The random variable X has the cumulative distribution (shown in
figure 1.3):

FX(x) =

∫ x
−∞

fX(t)dt = (x ≥ 0) =

∫ x
0

λe−λtdt = −
λe−λt

λ

∣∣∣∣x
0

= 1−e−λx

2. standard Gaussian (Normal) distribution (N(0, 1)):

fX(x) =
1
√
2π
e−x

2/2

and

FX(x) =
1
√
2π

∫ x
−∞

e−y
2/2dy,

called the standard Gaussian distribution.
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0

t)

1

1-exp(-λ

Figure 1.3: Exponential distribution.

If t = (x−µ)/σ then we have the Gaussian distribution with mean
µ and variance σ2 (N(µ, σ2)):

fX(x) =
1

√
2πσ

e−
1
2
(x−µ
σ
)2

and

FX(x) =
1

√
2πσ

∫ x
−∞

e−
1
2
( y−µ
σ
)2dy

3. Lognormal distribution:

let y = ln x and y ∈ N(µ, σ2) is a lognormal random variable.
Then, since

dy

dx
= 1 fX(x) = fY (y)

dy

dx

fY (y) =
1

√
2πσy

e
− 1
2
(
y−µy
σy
)2

fX(x) =
1

√
2πσyx

e
− 1
2
(
lnx−µy
σy

)2



1.2. DISTRIBUTIONS 9

σ1

σ
2

σ1 σ
2

-2 2 4 6

0.2

0.4

0.6

0.8

<

Figure 1.4: Gaussian cumulative distribution

1.2.2 Expected Value

A random variable can take on a large, often infinite, number of val-
ues. We are interested in substituting, in place of the possible values of
the random variable, a representative value that takes into account the
large or small probabilities associated with the RV. This value is called
the Expected Value or Expectation (in italiano valore atteso o speranza
matematica) and its symbol is E[·]. In the discrete case we can define
such a value as an average of the observations weighted with the respec-
tive probabilities, while in the continuous case we need to substitute sums
with integrals:

• Let X be a discrete random variable and let P (X = xk) = Pk.
Then

E[X] =
∞∑
k=1

xkpk
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Figure 1.5: Lognormal cumulative distribution
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If φ(x) is a continuous function then:

E[φ(X)] =
∞∑
k=1

φ(xk)pk

• Let X be a continous random variable with continous density fX .
Then

E[X] =

∫ +∞
−∞

tfX(t)dt

If φ(x) is a continuous function then:

E[φ(X)] =

∫ +∞
−∞

φ(t)fX(t)dt

It can be easily verified that

E[αX + βY ] = αEX + βEY

Examples:

• if X ∼ N(0, 1), then

E[X] =

∫ +∞
−∞

t
1
√
2π
e−

t2

2 dt

=
1
√
2π
e−

x2

2

∣∣∣∣+∞
−∞

= 0

• if X ∼ N(µ, σ2), then

E[X] =

∫ +∞
−∞

t
√
2πσ

e−
1
2
( t−mu

σ
)2dt

(z =
t− µ

σ
⇒ dz =

dt

σ

=

∫ +∞
−∞

1
√
2π
(σz + µ)e−

z2

2 dz

=
σ
√
2π

∫ +∞
−∞

ze−
z2

2 dz +
µ
√
2π

∫ +∞
−∞

e−
z2

2 dz

= µ
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• if X ∼ Exp(λ)

E[X] =

∫ +∞
0

te−λtdt

(p.p.) = λe−λt
∣∣+∞
0
−

∫ +∞
0

e−λtdt

=
1

λ

We are also interested in measuring the discrepancies with respect to
the expected value. This is accomplished by the “variance”:

var[X] = E[(X−EX)2] = E[X2]+E[X]2−2E[X]E[X] = E[X2]−E[X]2

Examples:

• if X ∼ N(0, 1), then

E[X2] =

∫ +∞
−∞

t2
1
√
2π
e−

t2

2 dt

(p.p.) =
1
√
2π

[
−te−

t2

2

∣∣∣+∞
−∞
+

∫
−∞

+∞e;−
t2

2
dt

]
= 1

and since E[X] = 0 we have:

var[X] = 1

• if Y ∼ N(µ, σ2), then we can write Y = σX +µ with X ∼ N(0, 1).
It follows:

E[Y ] = µ;E[X2] = 1

var[Y ] = E[(y − µ)2] = E[(σX + µ− µ)2] = σ2E[X2] = σ2

• if X ∼ U [0, 1], we say that a random variable X has uniform dis-
tribution in [0, 1]. Its density is shown in Figure 1.6, and its cumu-
lative density is as represented in figure 1.7. A simple calculation
shows that E[X] = 1/2 and var[X] = 1/12.
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Figure 1.6: Uniform density in [0, 1].

1

0

1

0

Figure 1.7: Uniform CDF in [0, 1].
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1.3 Random Vectors

Consider the example of the confined aquifer in section 1.1.2. An infinite
family F of random variables

{Yx, x ∈ S} (1.6)

was constructed there, where

Yx(ω) := h(x, ω)

is the piezometric head at x corresponding to a transmissivity profile ω.
Suppose a number of points p1, . . . , pn ∈ S are selected for measure-

ment and let the random variables X1, . . . , Xn be defined by

Xi := Ypi , i = 1, . . . , n.

Then, X := (X1, . . . , Xn) constitutes a random vector: it is a vector
valued random quantity.
Just as in the scalar case, the probabilities of the components of a

random vector X are embodied in its joint distribution function FX :
Rn → R, defined as follows:

FX1,...,Xn(x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn)

= P ((X1 ≤ x1) ∩X2 ≤ x2 ∩ . . . ∩Xn ≤ xn)

For instance if we throw two dice at the same time the outcome of one
does not depend on the outcome of the other. Then we can have: zsh:
command not found: G if its density is

fX(x) =
1
√
2π
e−‖x‖

2/2

where ‖ · ‖ denotes the ordinary Euclidean norm in Rn.
The expectation of a random vector X is defined componentwise:

E[X] := (E[X1], . . . , E[Xn])
T
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The covariance matrix of X is defined as:

Cov(X) := E[(X − E[X])(X − E[X])T ]

The (i, j)-th element of Cov(X) is

cij := E[(Xi − E[Xi])(Xj − E[Xj])
T ]

and it is referred to as the covariance of Xi and Xj.
A simple computation shows that if X ∼ N(0, I), then X has mean

0 ∈ Rn and its covariance matrix is the identity matrix I ∈ Rn×n.

1.3.1 Independence

The conditional probability of A given Bis defined as

P (A|B) :=
P (A ∩B)

P (B)

provided both A and B are events and P (B) 6= 0.
One can say that A and B are independent if P (A|B) = P (A) and

P (B|A) = P (B). Thus A and B are independent if and only if

P (A ∩B) = P (A)P (B) (1.7)

Clearly, this last condition makes sense even if either P (A) or P (B)
vanishes, hence can be (and usually is) taken as the definition of inde-
pendence of A and B.
Two random variables X and Y are independent if the events (X ≤

x) and (Y ≤ y) are independent in the sense of (1.7) for each choice of
x, y ∈ R, i.e. if

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) (1.8)

In other words X and Y are independent if and only if

FX,Y (x, y) = FX(x)FY (y). (1.9)
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A random vector X ∈ Rn has independent components if all its
marginals FXi1,...,Xik have the multiplicative property

FXi1,...,Xik = FXi1 · · ·FXik ,

for each ordered k-tuple (i1, . . . , ik) with {i1, . . . , ik} ⊂ {1, . . . , n} with
k ≤ n. N.B. It does not suffice to ask that FX1,...,Xn have the multiplica-
tive property for k = n only.
If X and Y have a joint density fXY , then both X and Y have a

density (fX and fY , respectively), namely the marginals

fX(x) =

∫ +∞
−∞

fXY (x, y)dy

fY (y) =

∫ +∞
−∞

fXY (x, y)dx.

The vectors X and Y are independent with a joint density fX,Y , then

fXY (x, y) = fX(x)fY (y) (1.10)

Conversely, if the joint density factors into the marginal densities, then (1.9)
holds. Thus (1.10) is a necessary and sufficient condition for indepen-
dence.
Let X and Y be independent and let φ and ψ be “regular” functions.

Then:

E[φ(X)ψ(Y )] =

∫ +∞
−∞

∫ +∞
−∞

φ(x)ψ(y)dFXY (x, y)

=

∫ +∞
−∞

φ(x)dFX(x)

∫ +∞
−∞

ψ(y)dFY (y),

i.e. under independence of X and Y ,

E[φ(X)ψ(Y )] = E[φ(X)]E[ψ(Y )] (1.11)

In particular, if X,Y are independent, then

Cov[X,Y ] =

(
Var[X] 0
0 Var[Y ]

)



1.3. RANDOM VECTORS 17

In fact, by (1.11)

E[(X − E[X])(Y − E[Y ])] = E[(X − E[X])]E[(Y − E[Y ])] = 0

Moreover

Var[aX + bY ] = a2Var[X] + 2abE[(X − E[X])(Y − E[Y ])] + b2Var[Y ]

i.e.
Var[aX + bY ] = a2Var[X] + b2Var[Y ]

if X and Y are independent.
The above results can be generalized for random vectors. If an n-

dimensional random vector X has independent components, then

Cov[X] = diag(Var[X1], . . . ,Var[Xn])

and
Var[cTX] = c21Var[X1] + · · · + c

2
nVar[Xn]

Let us apply the above results to the following particular situation:
sampling a given random variable, like when a measurement is repeated
a certain number of times.
Suppose X is a given random variable. A sample of length n from X

is a sequence of independent random variables X1, . . . , Xn, each of them
having the same distribution as X. The components of the sample are
said to be independent and identically distributed (“iid” for short).
The sample mean

Mn :=
X1 + . . .+Xn

n
(1.12)

is computed in order to estimate the “value” of X.
If

E[X] = m, Var[X] = σ2

Then

EMn = m, VarMn =
σ2

n
(1.13)

and the advantage of forming the sample average becomes apparent:
While the mean is unaltered, the variance reduces when the number n of
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width=10cm

Figure 1.8: Density of the sample mean when the number of observations
n increases.

observations increases. Thus, forming the arithmetic mean of a sample of
measurements results in a higher precision of the estimate. The situation
is as depicted in figure 1.8.
One feels tempted to assert that

Mn → m as n→∞

In fact it is true that

P
(
lim
n→∞

Mn = m
)
= 1 (1.14)

if X1, X2, . . . are iid random variables with mean m. This result is known
as the Strong Law of Large Numbers.
On the other hand, we know that

E[Mn] = m, Var[Mn] = σ
2/n

but we know nothing about the distribution of Mn. It is true that

E[Zn] = 0, Var[Zn] = 1
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where

Zn :=
Mn −m

σ/
√
n

The Central Limit Theorem states that if X1, . . . , Xn are iid with
mean m and variance σ2, then

lim
n→∞

P (Zn ≤ x) =
1
√
2π

∫ x
−∞

e−ξ
2/2dξ

uniformly in x ∈ R.
Thus, the sample mean is given by

Mn = m+
σ
√
n
Zn,

where the normalized errors Zn are “asymptotically Gaussian”.
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Chapter 2

Geostatistics in Hydrology:
Kriging interpolation

Hydrologic properties, such as rainfall, aquifer characteristics (porosity,
hydraulic conductivity, transmissivity, storage coefficient, etc.), effective
recharge and so on, are all functions of space (and time) and often display
a high spatial variability, also called heterogeneity. This variability is not
in general random. It is a general rule that these properties display a so
called “scale effect”, i.e., if we take measurements at two different points
the difference in the measured values dicreases as the two points come
closer to each other.

It is convenient in certain cases to consider these properties as ran-
dom functions having a given spatial structure, or in other word having a
given spatial correlation, which can be conveniently described using ap-
propriate statistical quantities. These variables are called “regionalized”
variables [5].

The study of regionalized variables starts from the ability to inter-
polate a given field starting from a limited number of observation, but
preserving the theoretical spatial correlation. This is accomplished by
means of a technique called “kriging” developed by [4, 5] and largely
applied in hydrology and other earth science disciplines [3, 6, 7, 1] for
the spatial interpolation of various physical quantities given a number of
spatially distributed measurments.

21
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Although theoreticallly kriging cannot be considered superior to other
surfave fitting techniques [7] and the use of a few arbitrary parameters
may lead absurd results, this method is capable of obtaining “objective”
interpolations evaluating at the same time the quality of the results.

In the next sections we discuss first the statistical hypothesis that
are needed to develop the theory of krigin and then we proceed at de-
scribing the method under different assumptions and finally report a few
applications.

2.1 Statistical assumptions

Let Z(~x, ξ) be a random function (RF) simulating our hydrological quan-
tity of interest. We recall that with this notation we imply that ~x denots
a point in space (two or three dimensional space), while ξ denotes the
state variable in the space of the realizations. In other words:

• Z(~x0, ξ) is a random variable at point ~x0 representing the entire set
of realizations of the RF at point ~x0;

• Z(~x, ξ1) is a particular realization of the RF Z;

• Z(~x0, ξ1) is a measurement point.

Given a set of sampled values Z(~xi, ξ1), i = 1, 2, . . . we want to re-
construct Z(~x, ξ1), i.e. a possible realization of Z(~x, ξ).

2.2 Kriging for Weak or Second Order sta-

tionary RF

An RF is said to be second order stationary if:

1. Constant mean:

E[Z(~x, ξ)] = m (2.1)
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2. the autocovariance (another name for the covariance) is a function
of the distance between the reference points ~x1 and ~x2:

cov[~x1, ~x2] = E[(Z(~x1, ξ)−m)(Z(~x2, ξ)−m)] = C(~h) (2.2)

In practice second order stationarity implies that the first two statistical
moments (expected value and covariance) be translation invariant. Note
that by saying that E[Z(~x, ξ)] = m we imply that effectively the expected
value taken on all the possible realizations ξ does not vary with space.
However, for a given realization Z(~x, ξ1) is a function of ~x.
Because of (2.1), the covariance (2.2) can be written as:

cov[~x1, ~x2] = E[(Z(~x1, ξ)−m)(Z(~x2, ξ)−m)]

= E[Z(~x1, ξ)Z(~x2, ξ)]−mE[Z(~x2, ξ)]− E[Z(~x1, ξ)]m+m
2

= E[Z(~x1, ξ)Z(~x2, ξ)]−m
2 (2.3)

Obviously if ~h = 0 we have the definition of variance, also called the
“dispersion” variance:

C(0) = var[Z] = σ2Z

For simplicity of notation, from now on, we will denote x = ~x, h = ~h and
we will drop the variable ξ in the RF.

Case with m and C(~h) known If [Z(x)] = m and C(h) are known,
then we can define a new variable Y (x) with zero mean:

Y (x) = Z(x)−m

E[Y (x)] = 0

Given the observed values:

x1 x2 . . . xn
Y1 Y2 . . . Yn

with Yi = Y (xi) being the observation at point xi. we look for a linear
estimator Y ∗(x0) of Y (x0) at point x0 using the observed values. The
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form of the estimator is:

Y ∗(x0) =
n∑
i=1

λiYi (2.4)

Note that the estimator (2.4) is a realization of the RF

Y ∗(x0, ξ) =
n∑
i=1

λiY (xi, ξ)

The weights λi are calculated by imposing that the statistical error

ε(x0) = Y (x0)− Y
∗(x0)

has minimum variance:

var[ε(x0)] = E[(Y (x0)− Y
∗(x0))

2] = minimum

Substituting eq. (2.4) in the expression of the variance we have:

E[(Y (x0)− Y
∗(x0))

2] = E[(
n∑
i=1

λiYi − Y0)
2]

= E[(
n∑
i=1

λiYi − Y0)(
n∑
i=1

λiYi − Y0)]

= E[(
n∑
i=1

λiYi)(
n∑
i=1

λiYi)]− 2E[
n∑
i=1

λiYiY0] + E[Y
2
0 ]

=
n∑
i=1

n∑
j=1

λiλjE[YiYj]− 2
n∑
i=1

E[YiY0] + E[Y
2
0 ]

but, since m = 0

E[YiYj] = C(xi − xj) +m
2 = C(xi − xj)

and
E[Y 20 ] = C(0) = var[Y ]
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is the dispersion variance of Y . Then:

E[(Y (x0)− Y
∗(x0))

2] =
n∑
i=1

n∑
j=1

λiλjC(xi − xj)− 2
n∑
i=1

λiC(xi − x0)

+ C(0)

The minimum is found by setting to zero the first partial derivatives:

∂

∂λi

(
E[(Y (x0)− Y

∗(x0))
2]
)
= 2

n∑
j=1

λjC(xi − xj)− 2C(xi − x0) = 0

j = 1, . . . , n

This yields a linear system of equations:

Cλ = b (2.5)

where matrix C is given by:

C =


C(0) C(x1 − x2) . . . c(x1 − xn)
· · ·
· ·

C(xn − x1) C(0)


and the right hand side vector b is given by:

b =


C(x1 − x0)

·
·
·

C(xn − x0)


Matrix C is the spatial covarianve matrix and does not depend upon

x0. It can be shown that if all the xj’s are distinct then C is positive def-
inite, and thus the linear system (2.5) can be solved with either direct or
iterative methods. Once the solution vector λ is obtained, equation (2.4)
yields the estimation of our regionalized variable at point x0. Thus the
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calculated value for λ is actually function of the estimation point x0. If we
want to change the estimation point x0, for example if we need to obtain
a spatial distribution of our regionalized variable, we need to solve the
linear system (2.5) for different values of x0. In this case it is convenient
to factorize matrix C using Cholseky decomposition and then proceed to
the solution for the different right hand side vectors.

Evaluation of the estimation variance The estimation variance is
defined as the variance of the error:

ε = Y ∗0 − Y0

Hence:
var[Y ∗0 − Y0] = E[(Y

∗
0 − Y0)

2]− E[(Y ∗0 − Y0)]
2

but:

E[(Y ∗0 − Y0)] = E[Y
∗
0 ]− E[Y0] =

∑
i

λiE[Yi]− E[Y0] = 0

(E[Y ] = m = 0)

and since ∑
j

λjC(xi − xj) = C(xi − x0)

we finally obtain:

var[Y ∗0 − Y0] = E[(Y ∗0 − Y0)
2]

=
∑
i

∑
j

λiλjC(xi − xj)− 2
∑
i

λiC(xi − x0) + C(0)

= −
∑
i

λiC(xi − x0) + C(0)

= var[Y ]−
∑
i

λiC(xi − x0)

which, since
∑
i λiC(xi − x0) > 0, shows that the estimation variance

of Y0 is smaller than the dispersion variance of Y (the real variance of
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the RF). In statistical terms, we can interpret this result by saying that
since we have observed Y at some points xi then the uncertainty on Y
decreases.
It is important to remark the difference between estimation and dis-

pertion variance. The latter is representative of the variation interval of
the RF Y within the interpolation domain, while the estimation variance
represents the residual uncertainty in the estimation of the realization
Y ∗0 of Z when n observations are available. The dispersion variance is a
constant, while the estimation variance varies from point to point and is
zero at the observation points.
Our original variable was Z = Y +m and its estimate is thus:

Z∗0 = m+
∑
i

λi(Zi −m)

var[Z∗0 − Z0] = var[Z0]−
∑
i

λiC(xi − x0)

2.3 Kriging with the intrinsic hypothesis

The hypothesis of second order stationarity of the RF is not always sat-
isfied, for example C(0) increases with the distance, violating hypothe-
sis (2.2). In this case the “Intrinsic hypothesis” must be used, in which
we assume that the first order increments

δ = Y (x+ h)− Y (x)

are second order RF:

E[Y (x+ h)− Y (x)] = m(h) = 0 (2.6)

var[Y (x+ h)− Y (x)] = 2γ(h) (2.7)

where the function γ(h) is called the variogram. If the mean m(h) is
not zero an obvious change of variable is required. The variogram is
defined as the mean quadratic increment of Y (x) (divided by 2) for any
two points xi and xj separated by a distance h:

γ(h) =
1

2
var[Y (x+ h)− Y (x)] =

1

2
E[(Y (x+ h)− Y (x))2] (2.8)
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Figure 2.1: Behavior of the covariance as a function of distance (left) and
the corresponding variogram (right).

and is related to the covariance function by:

γ(h) =
1

2
E[(Y (x+ h)− Y (x))2]

=
1

2
E[Y 2(x+ h)]− E[Y (x+ h)Y (x)] +

1

2
E[Y 2(x)]

= C(0)− C(h)

The intrinsic hypothesis requires a finite value for the mean of Y (x) but
not for its variance. In fact, hypothesis (2.2), as changed into (2.3),
implies (2.8), but not viceversa.

The covariance C(h) has a decreasing behavior as shown in Fig. 2.1.
When C(h) is known then the variogram can be directly calculated.
When C(0) is finite, the variogram γ(h) is bounded asymptotically by this
value. The value of h at which the asymptot can be considered achieved
is called the “range“, while C(0) is called the “sill” (see Fig. 2.1).
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2.3.1 The variogram

The variogram is usually calculated from the experimental observations,
and describes the spatial structure of the RF. It can be shown [5] that if
x0, x1, . . . , xn are n + 1 points belonging to the domain of interpolation
and the coefficients λ0, λ1, . . . , λn satisfy:

n∑
i=0

λi = 0

then γ(h) has to satisfy:

−
n∑
i=0

n∑
j=0

λiλjγ(xi − xj) ≥ 0

and

lim
|h|→∞

γ(h)

h2
= 0

i.e. γ(h) is tends to infinity slowlier thatn |h|2 as |h| → ∞.
In principle there γ(h) could assume different behaviors also with

the direction of vector h (“anisotropy”), but this is in general not easily
verifiable due to the limited number of data points usually available for
hydrologic variables. If the experimental variogram displays anisotropy,
then the intrinsic hypothesis is not verified and one has to use the so
called “universal” kriging [2, 3].
The most commonly used isotropic variograms are shown in Fig. 2.2

and are of the form:

1. polinomial variogram:

γ(h) = ωhα 0 < α < 2

2. exponential variogram:

γ(h) = ω
[
1− e−αh

]
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Figure 2.2: Behavior of the most commmonly used variograms: polino-
mial (top left); exponential (top right); gaussian (bottom left); spherical
(bottom right)
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3. gaussian variogram:

γ(h) = ω
[
1− e−(αh)

2
]

4. spherical variogram:

γ(h) =

{
1
2
ω
[
3h
α
−
(
h
α

)3]
h ≤ α

ω h > α

where ω and α are real constants.
The variogram is estimated from the available observations in the

following manner. The data points are subdivided into a prefixed number
of classes based on the distances between the measurement locations. For
each pair i and j of points and for each class calculate:

1. the number M tha fall within tha class;

2. the average distance of the class;

3. the half of the mean quadratic increment

1

2

∑
(Yi − Yj)

2/M

In general the pairs are not uniformly distributed among the different
classes as usually there are more pairs for the smaller distances. Thus
the experimental variogram will be less meaninful as h increases. A best
fit procedure together with visual inspection is then used to select the
most appropriate variogram and evaluate its optimal parameters.

Remark 1. An experimental variogram that is not bounded above (for
example the polinomial variogram with α ≥ 1) implies an infinite vari-
ance, and thus the covariance does not exist. Only the intrinsic hypothe-
sis is acceptable. If the variogram achieves a “sill” then the phenomenon
has a finite variance and the covariance exists.
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Figure 2.3: Example of typical spatial correletion structures that may be
encountered in analyzing measured data
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Remark 2. For every variogram, γ(0) = 0. However sometimes the
data may display a jump at the origin. This apparent discontinuity is
called the “nugget effect” and can be due to measurement errors or to
microregionalization effects that are not evidenced at the scale of the
actual data points. If the nugget effect is present the the variogram
needs to be changed into:

γ(h) = δ + γ0(h)

where δ is the jump at the origin and γ0(h) the variogram without the
jump. In Fig. 2.3 we report a variogram with the nugget effect together
with some other special cases that may be encountered.

2.4 Remarks about Kriging

a. Kriging is a BLUE (Best Linear Unbiased Estimator) interpolator.
In other word it is a Linear estimator that matches the correct
expected value of the population (Unbiased) and that minimizes
the variance of the observations (Best).

b. Kriging is an exact interpolator if no errors are present. In fact, if
we set x0 = xi in (2.5) we obtain immediately λi = 1, λj = 0, j =
1, . . . , n, j 6= i.

c. If we assume that the the error ε is Gaussian, then we can associate
to the estimate Y ∗(x0) a confidence interval. For example, the 95%
confidence interval is ±2σ0 where:

σ0 =
√
var[Y ∗(x0)− Y (X0)]

Then the krigin estimator (2.4 becomes:

Y ∗(x0) =
n∑
i=1

λiYi

d. The solution of the linear system does not depend on the observed
value but only on xi and x0.
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e. A map of the estimated regionalized variable, and possibly its con-
fidence intervals, can be obtained be defining a grid and solving the
linear system for each point in the grid.

2.5 Kriging with uncertainties

We now assume that the observations Yi are affected by measurement
errors εi, and that:

1. the errors εi have zero mean:

E[εi] = 0 i = 1, . . . , n

2. the errors are uncorrelated:

cov[εi, εj] = 0 i 6= j

3. the errors are not correlated with the RF:

cov[εi, Yi] = 0

4. the variance σ2i of the errors is a known quantity and can vary from
point to point.

The new coefficient matrix C of the linear system (2.5) is changed by
adding to the main diagonal the quantity −σ2)i:

C +

 σ21 · 0
0 · 0
0 · σ2n


and everything proceeds as in the standard case.
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2.6 Validation of the interpolation model

The chosen model (in practice the variogram) can be validated by in-
terpolating observed values. If n observations Y (xi), i = 1, . . . , n are
available, the validation process proceeds as follows:

For each j, j = 1, . . . , n:

• discard point (xj, Y (xj));

• estimate the Y ∗(xj) by solving the kriging system having set x0 =
xj and using the remaining points xi, i 6= j for the interpolation;

• evaluate the estimation error εj = Y ∗j − Yj,

The chosen model can be considered theoretically valid if the error
distribution is approximately gaussian with zero mean and unit variance
(N(0, 1), i.e. satisfies the following:

1. there is no bias:
1

n

n∑
i=1

εi ≈ 0

2. the estimation variance σi is coherent with the error standard de-
viation:

1

n

n∑
i=1

(
Y ∗i − Yi
σi

)2
= 1

One can also look at the behavior of the interpolation error at each point
looking at the mean square error of the vector ε:

Q =

√√√√ 1
n

n∑
i=1

ε2i

The uncertainties connected to the choice of the theoritcal variogram
from the experimental data can be minimized by anaylizing the validation
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test. In fact, among all the possible variograms γ(h), that close to the
origin display a slope compatible with the obesrvations and gives rise to
a theoretically coherent model, one can choose the variogram with the
smallest value of Q.

2.7 Computational aspects

In the validation phase n linear systems of dimension n − 1 need to
be solved. The system matrices are obtained by dropping one row and
one complumn of the complete kriging matrix. This can be efficiently
accomplished by means of intersections of n − 1-dimensional lines with
apporpriate coordinate n-dimensional planes.
Note that the krigin matrix C is symmetric, and thus its eigenvalues

λi are real. However, since

n∑
i=1

λi = Tr(C) =
n∑
i=1

cii = 0

where Tr(C) is the trace of matrix C, it follows that some of the eigenval-
ues must be negative and thus C is not positive definite. For this reason,
the solution of the linear systems is usually obtained by means of direct
methods, such as Gaussian elimination or Choleski decomposition. Full
Pivoting is often necessary to maintain stability of the algorithm.

2.8 Kriging with moving neighborhoods

Generally the experimental variogram is most accurate for small values
of h, with uncertainties growing rapidly when h is large. The influence
of this problem may be decreased by using moving neighborhoods. With
this variant, only the points that lie within a prefixed radios R from point
x0 are considered, provided that we are left with an adequate number of
data (Fig. 2.4). The redius R is selected so that the lag h will remain
with the range of maximum certainty for γ(h).
This approach leads also to high saving in the computational cost of

the procedure because each linear system is now much smaller (Gaussian
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x
0

R

Figure 2.4: Example of interpolation with moving neighborhood
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elimination has a computational cost proportional to n3, where n is the
number of equations).

2.9 Detrending

In certain cases the observations display a definite trend that needs to
be taken into account. This is the case, for example, when one needs to
interpolate piezometric heads observed from wells in an aquifer system
where a regional gradient is present. To remove the trend from the data
it is possible to work with residuals (= measurements - trend) that have
a constant mean. However this detrending procedure may be dangerous
as it may introduce a bias in the results. For this reason it is important
tha the trend be recognized not only from the raw data but also from
the physical behavior of the system from which the data come. If the
trend cannot be removed from the observations by simple subtraction,
the universal kriging approach [2, 3] can be used.
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2.10 Example of application of kriging for

the reconstruction of an elevation map
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