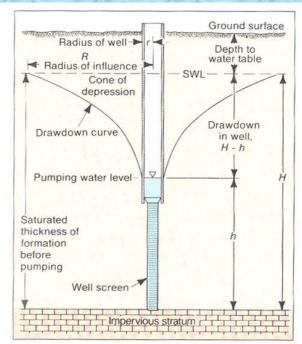
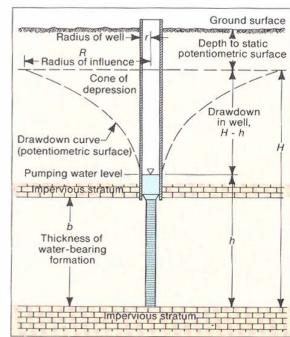
# Well Hydraulics

The time required to reach steady state depends on S(torativity) T(ransmissivity) BC(boundary conditions) and Q(pumping rate).

- cone of depression
- static water level (SWL)
- drawdown
- residual drawdown
- radius of influence
- storage coefficient S
- transmissivity T



Well in an unconfined aquifer showing the meaning of the various terms used in the equilibrium equation.



Well in a confined aquifer showing the meaning of various terms used in the equilibrium equation.

# **Simplest Situation**

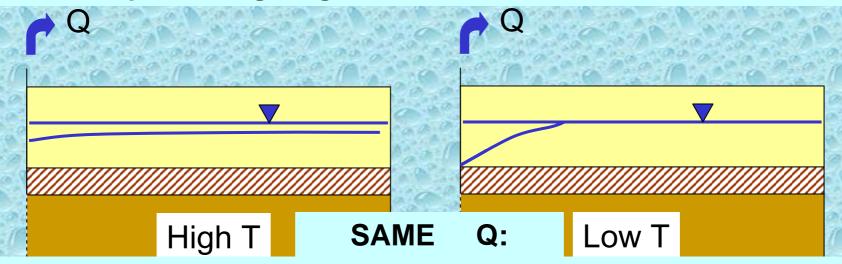
Steady State, Confined, inflow balances outflow

Only relationships between drawdown and distance need be considered

Only Transmissivity matters and can be determined ... Storage properties are irrelevant

The shape of the drawdown cone is controlled by pumping rate **Q** and **T**ransmissivity,

lower T requires a higher gradient for the same Q



Darcy's Law Q=KiA is satisfied on every cylinder around the well, the gradient decreases linearly with distance from the well as the area increases linearly

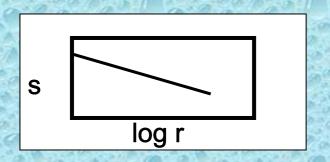
# STEADY STATE, CONFINED

# **Assuming**

- aquifer is homogeneous, isotropic, areally infinite
- pumping well fully penetrates and receives water from the entire thickness of the aquifer
- Transmissivity is constant in space and time
- pumping has continued at a constant rate long enough for steady state to prevail
- Darcy's law is valid

Plot s vs log r from a number of wells as follows

s vs. log r - is a straight line, if assumptions are met, drawdown decreases logarithmically with distance form the well because gradient decreases linearly with increasing area ( $2\pi$ rh)



$$Q = \frac{2\pi T (h_2 - h_1)}{\ln(r_2/r_1)}$$
 Theim Eqtn

 $T = transmissivity [L^2/T]$ Q = discharge from pumped well  $[L^3/T]$ r = radial distance from the well [L] h = head at r [L]

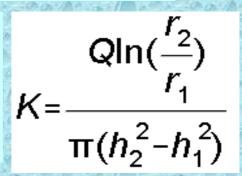
and rearranging to get T from field data:

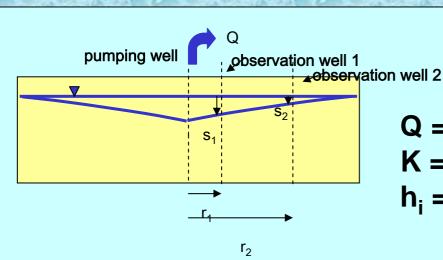
$$T = \frac{Q}{2\pi(h_2 - h_1)} \ln(\frac{r_2}{r_1})$$

In an unconfined aquifer, T is not constant If drawdown is small relative to saturated thickness, confined equilibrium formulas can be applied with only minor errors Otherwise call on **Dupuit** assumptions and use:

$$Q = \pi K \frac{(h_2^2 - h_1^2)}{\ln(r_2/r_1)}$$
 or, to determ  
K from field  
measurement

or, to determine measurements of head:





 $Q = pumping rate [L^3/T]$ 

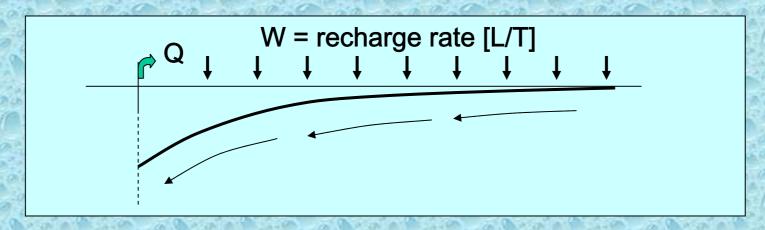
K = permeability [L/T]

h<sub>i</sub> = head @ a distance r<sub>i</sub> from well [L]

using the aquifer base as datum

The aquifer base must be the datum because the head not only represents the gradient but also reflects the aquifer thickness, hence the flow area.

# More likely, vertical leakage will satisfy Q with w = recharge rate, then:

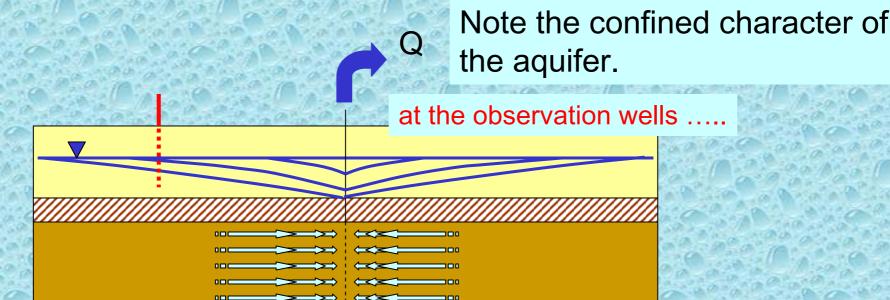


# We can include recharge in the expression:

$$h_2^2 - h_1^2 = \frac{W}{2K} (r_1^2 - r_2^2) + \frac{Q}{\pi K} \ln(\frac{r_2}{r_1})$$

and solve for K:

$$K = \frac{\frac{W}{2}(r_1^2 - r_2^2) + \frac{Q}{\pi} \ln(\frac{r_2}{r_1})}{(h_2^2 - h_1^2)}$$



A The aquifer is confined because water levels in the bore that penetrates the aquifer are above the top of the aquifer.

C The red well will reflect the water level in the upper aquifer and we will not know about any of the blue water levels shown in the diagram.

# The Qualitative Viewpoint:

Infinite Aquifer, Initially hydrostatic

Water flows "more easily" in high T material vs low T, Thus for the same Q

steeper gradients occur in low T material

Initially water is removed from storage near the well bore

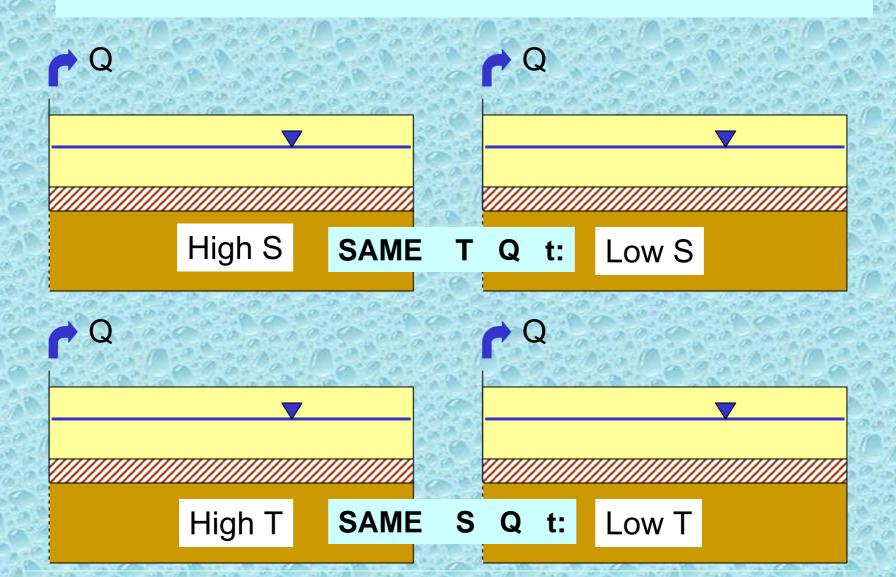
If S is high: we get more water

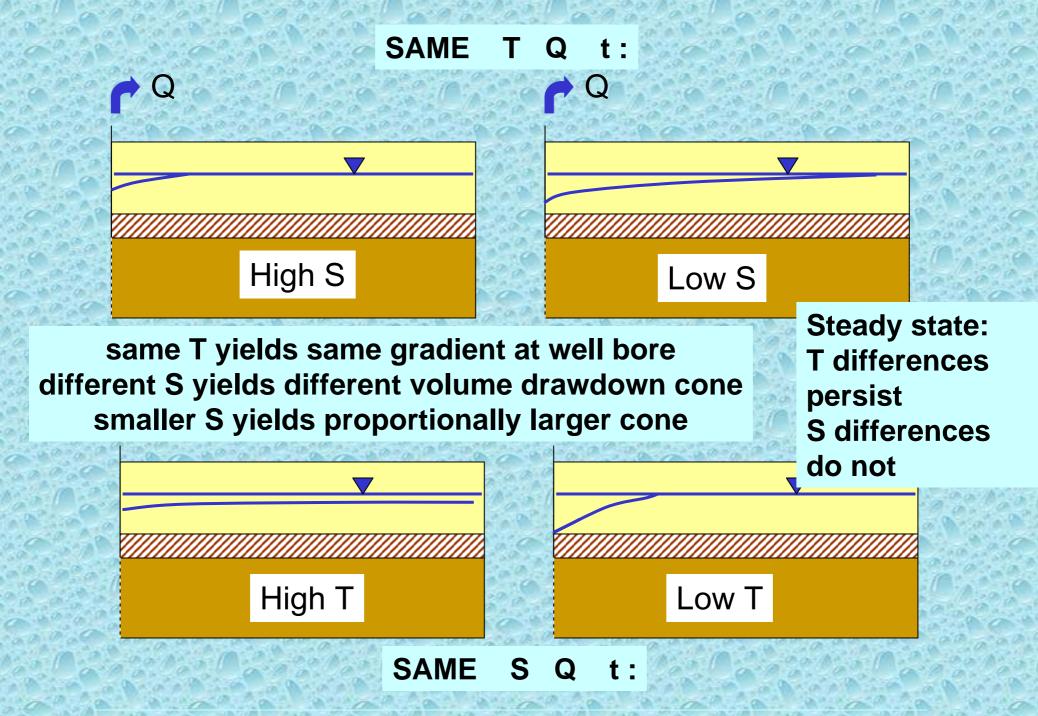
for the same drop in head

over the same area

compared with low S

Sketch the relative drawdown cones for the cases below





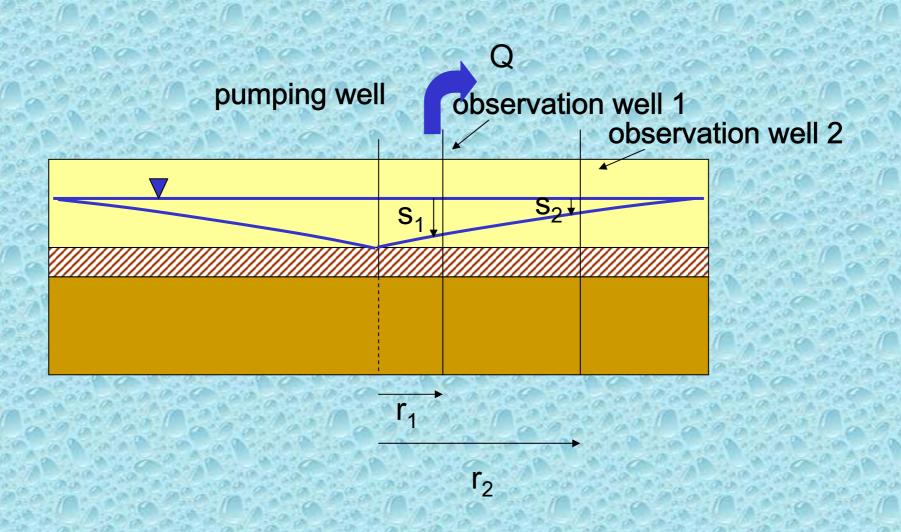
#### USING TRANSIENT RESPONSE OF SYSTEMS TO PUMPING

# **Benefits/Disadvantages**

- can estimate storativity values
- •when estimating aquifer properties, we get results at early time
- easier to detect extraneous effects
- analysis is more complex

# **Assumptions**

- 1. homogeneous, isotropic, infinite areal extent
- 2. pumping well fully penetrates and receives water from the entire thickness of the aquifer
- 3. Transmissivity is constant in space and time
- 4. well has infinitesimal diameter
- 5. water removed from storage is discharged instantaneously with decline in head



# Theis Equation

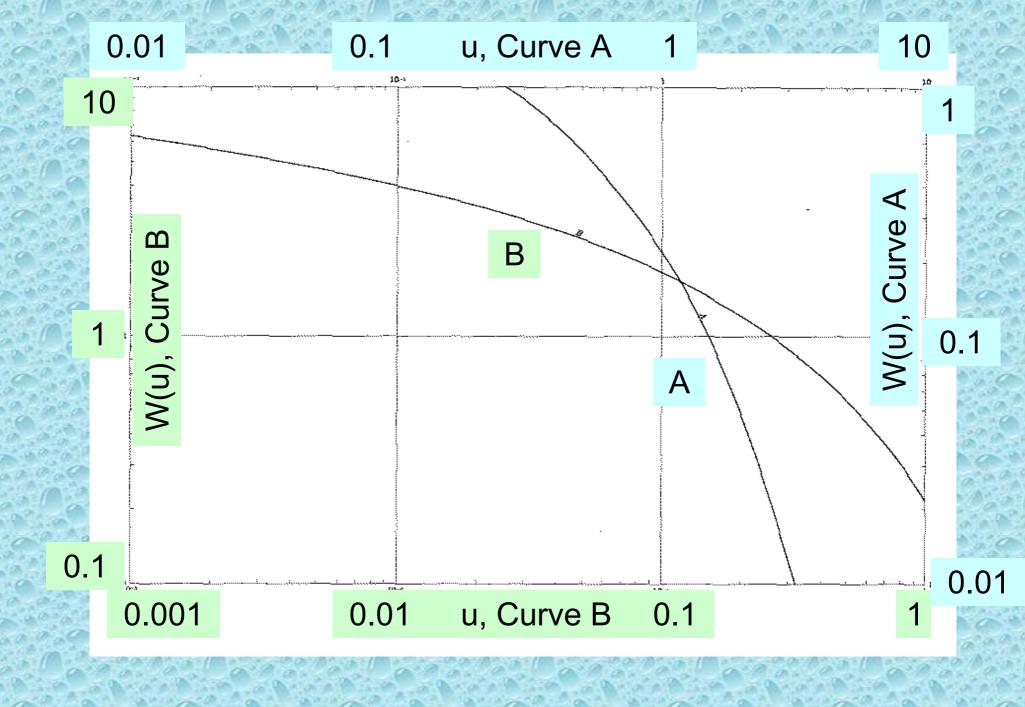
$$s=h_o-h=\frac{Q}{4\pi T}W(u)$$

$$u = \frac{r^2S}{4Tt}$$
 or  $\frac{r^2}{t} = \frac{4T}{S}u$ 

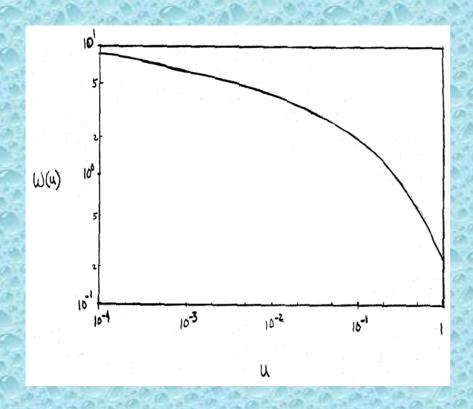
s = drawdown [L]
h<sub>o</sub> = initial head @ r [L]
h = head at r at time t [L]
t = time since pumping began [T]
r = distance from pumping well [L]
Q = discharge rate [L<sup>3</sup>/T]
T = transmissivity [L<sup>2</sup>/T]
S = Storativity []

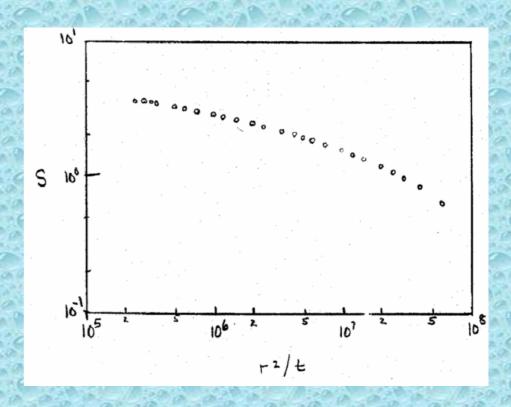
$$W(u) = \int_{u}^{\infty} \frac{e^{-u}}{u} du = \left[-0.5772 - \ln u + u - \frac{u^{2}}{2 \cdot 2!} + \frac{u^{3}}{3 \cdot 3!} - \frac{u^{4}}{4 \cdot 4!} + \dots\right]$$

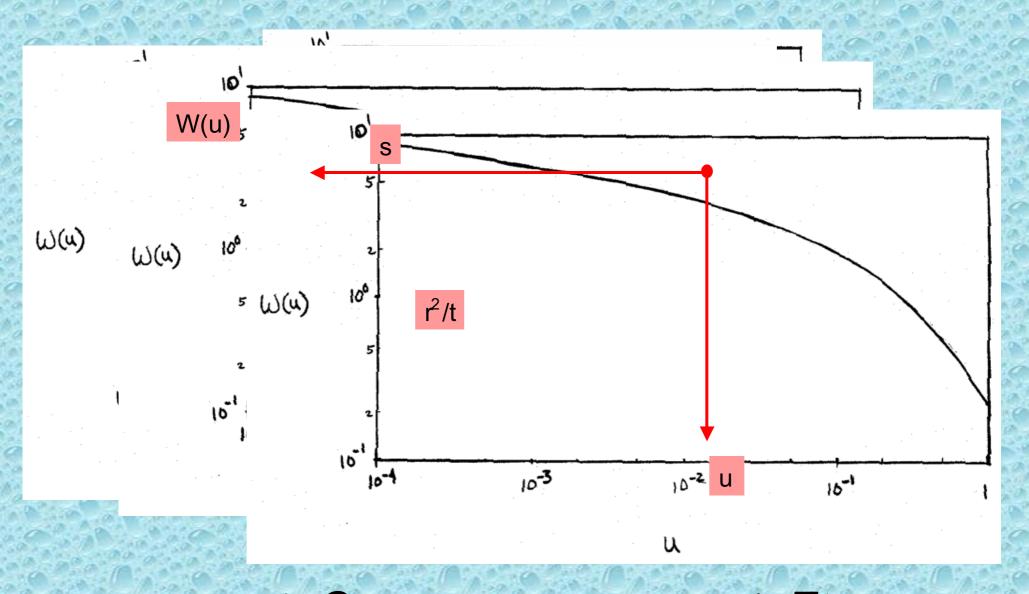
| и                   | W(u)  | u                   | W(u)  | и                   | W(u) | u                  | W(u)  |
|---------------------|-------|---------------------|-------|---------------------|------|--------------------|-------|
| $1 \times 10^{-10}$ | 22.45 | 7 × 10 <sup>8</sup> | 15.90 | 4 × 10 <sup>5</sup> | 9.55 | $1 \times 10^{-2}$ | 4.04  |
| 2                   | 21.76 | 8                   | 15.76 | 5                   | 9.33 | 2                  | 3.35  |
| 3                   | 21.35 | 9                   | 15.65 | 6                   | 9.14 | 3                  | 2.96  |
| 4                   | 21.06 | $1 \times 10^{-7}$  | 15.54 | 7                   | 8.99 | 4                  | 2.68  |
| 5                   | 20.84 | 2                   | 14.85 | 8                   | 8.86 | 5                  | 2.47  |
| 6                   | 20.66 | 3                   | 14.44 | 9                   | 8.74 | 6                  | 2.30  |
| 7                   | 20.50 | 4                   | 14.15 | $1 \times 10^{-4}$  | 8.63 | 7                  | 2.15  |
| 8                   | 20.37 | 5                   | 13.93 | 2                   | 7.94 | 8                  | 2.03  |
| 9                   | 20.25 | 6                   | 13.75 | 3                   | 7.53 | 9                  | 1.92  |
| $1 \times 10^{-9}$  | 20.15 | 7                   | 13.60 | 4                   | 7.25 | $1 \times 10^{-1}$ | 1.823 |
| 2                   | 19.45 | 8                   | 13.46 | 5                   | 7.02 | 2                  | 1.223 |
| 3                   | 19.05 | 9                   | 13.34 | 6                   | 6.84 | 3                  | 0.906 |
| 4                   | 18.76 | $1 \times 10^{-6}$  | 13.24 | 7                   | 6.69 | 4                  | 0.702 |
| <b>§</b> 5          | 18.54 | 2                   | 12.55 | 8                   | 6.55 | 5                  | 0.560 |
| 6                   | 18.35 | 3                   | 12.14 | 9                   | 6.44 | 6                  | 0.454 |
| 7                   | 18.20 | 4                   | 11.85 | $1 \times 10^{-3}$  | 6.33 | 7                  | 0.374 |
| 8                   | 18.07 | 5                   | 11.63 | 2                   | 5.64 | 8                  | 0.311 |
| 9                   | 17.95 | 6                   | 11.45 | 3                   | 5.23 | 9                  | 0.260 |
| $1 \times 10^{-8}$  | 17.84 | 7                   | 11.29 | 4                   | 4.95 | $1 \times 10^{0}$  | 0.219 |
| 2                   | 17.15 | 8                   | 11.16 | 5                   | 4.73 | 2.                 | 0.049 |
| 3                   | 16.74 | 9                   | 11.04 | 6                   | 4.54 | 3                  | 0.013 |
| 4                   | 16.46 | $1 \times 10^{-5}$  | 10.94 | 7                   | 4.39 | 4                  | 0.004 |
| 5                   | 16.23 | 2                   | 10.24 | 8                   | 4.26 | 5                  | 0.001 |
| 6                   | 16.05 | 3                   | 9.84  | 9                   | 4.14 |                    |       |



# Use of the Theis equation to determine T and S from a pumping test matching the W(u) curve on a log-log plot s vs r<sup>2</sup>/t







$$T = \frac{1}{4\pi} \frac{\mathbf{Q}}{\mathbf{s}} \mathbf{W(u)}$$

$$S = \frac{4uTt}{r^2}$$

# Cooper-Jacob simplified the Theis equation for large t and small r using only the first 2 terms of the W(u) function

$$s=h_o-h=\frac{Q}{4\pi T}W(u) \qquad u=\frac{r^2S}{4Tt}$$

$$u=\frac{r^2S}{4Tt}$$



s = drawdown [L]  $h_0$  = initial head @ r [L]

h = head at r at time t [L]

t = time since pumping began [T]

r = distance from pumping well [L]

Q = discharge rate  $[L^3/T]$ 

 $T = transmissivity [L^2/T]$ 

S = Storativity []

What is small?

 $W(u) = \int \frac{e^{-u}}{u} du = \left[ -0.5772 - \ln u \right] u - \frac{u^2}{2 \cdot 2!} + \frac{u^3}{3 \cdot 3!} - \frac{u^4}{4 \cdot 4!} + \dots \right]$ 

$$s = \frac{2.3Q}{4\pi T} \log \frac{2.25Tt}{r^2S}$$

Simplified expression

$$s = \frac{2.3Q}{4\pi T} \log \frac{2.25Tt}{r^2S}$$

Since Q r T & S are constant, s vs log t should be a straight line then:

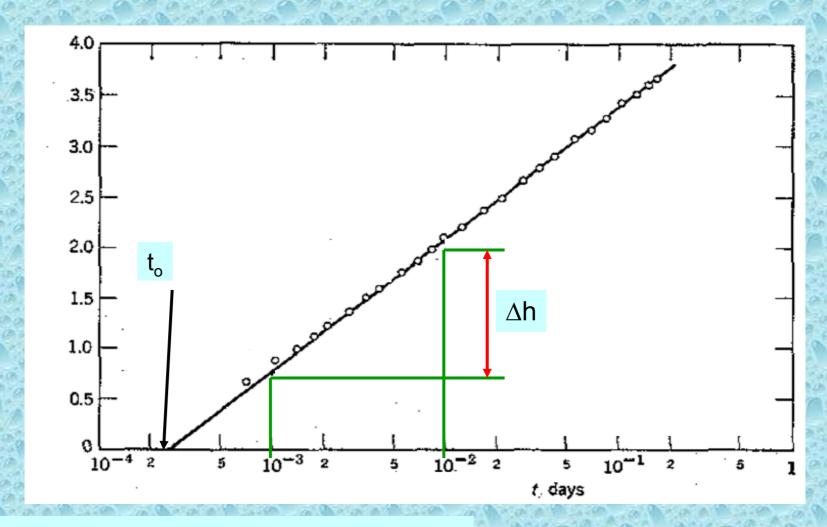
$$T = \frac{2.3Q}{4\pi\Delta h}$$

$$S = \frac{2.25 T t_o}{r^2}$$

where:

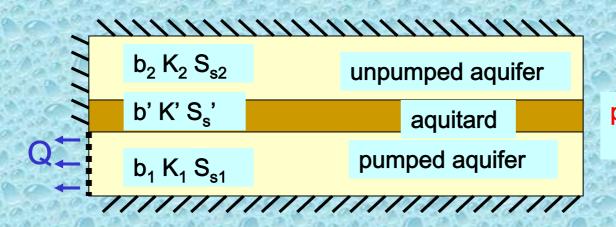
 $\Delta h$  = drawdown over 1 log cycle of time

t<sub>o</sub> = time intercept for zero drawdown



Plot  $\Delta h$  vs log t (for one point in time) and use:  $\Delta h$  drawdown over 1 log cycle  $t_o$  = time corresponding to  $\Delta h$ =0

### **LEAKY AQUIFERS**



previously K' was zero (i.e. no leakage)

subscript 1 = pumped zone

subscript 2 = unpumped aquifer

prime = aquitard

Q = pumping rate

b = thickness

K = hydraulic conductivity

 $S_s$  = specific storage

assume:

no head change in shallow aquifer

horizontal flow in aquifers

vertical flow in aquitards

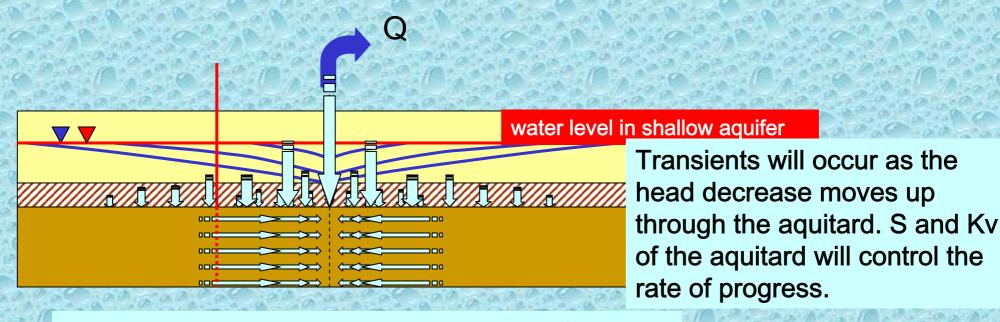
aquifer extends far enough to

intercept enough leakage to satisfy Q

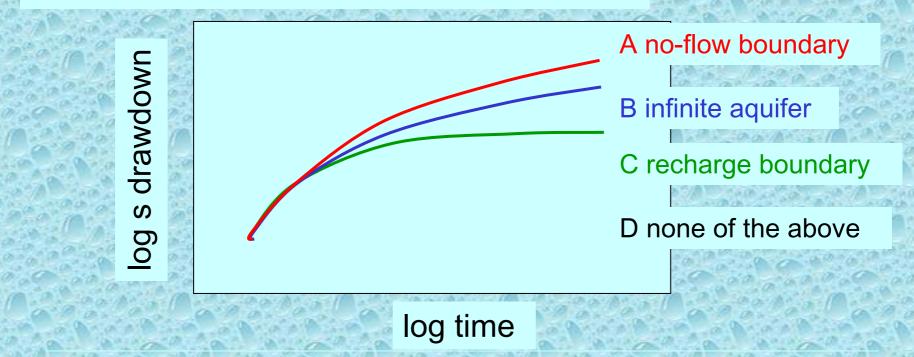
Theis assumptions

(other than infinite aquifer) apply

Solution is similar to Theis Solution but well function is more complex

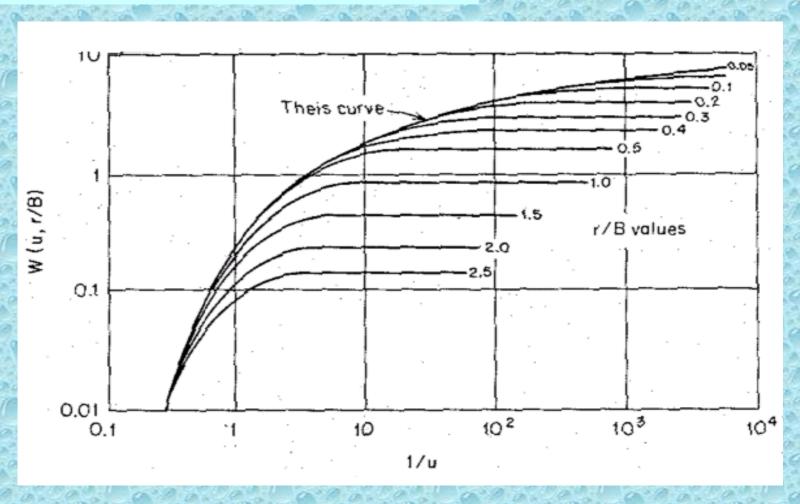






# Hantush & Jacob 1955 assumed no storage in the aquitard and expressed this solution in terms of a dimensionless parameter

$$\frac{r}{B} = r \sqrt{\frac{K'}{K_1 b_1 b'}}$$



Curve match W(u, r/B) r/B 1/u

matched with s t 
$$s=h_0-h=\frac{Q}{4\pi T}W(u,r/B)$$

Solve for K₁ from

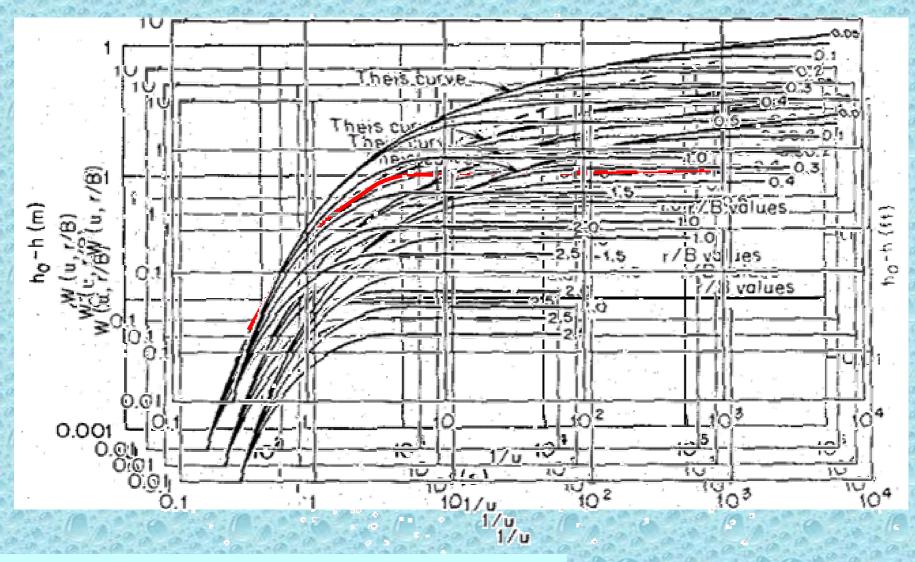
$$K_1 = T/b_1$$

Solve for K' from

$$\frac{r}{B} = r \sqrt{\frac{K'}{K_1 b_1 b'}}$$

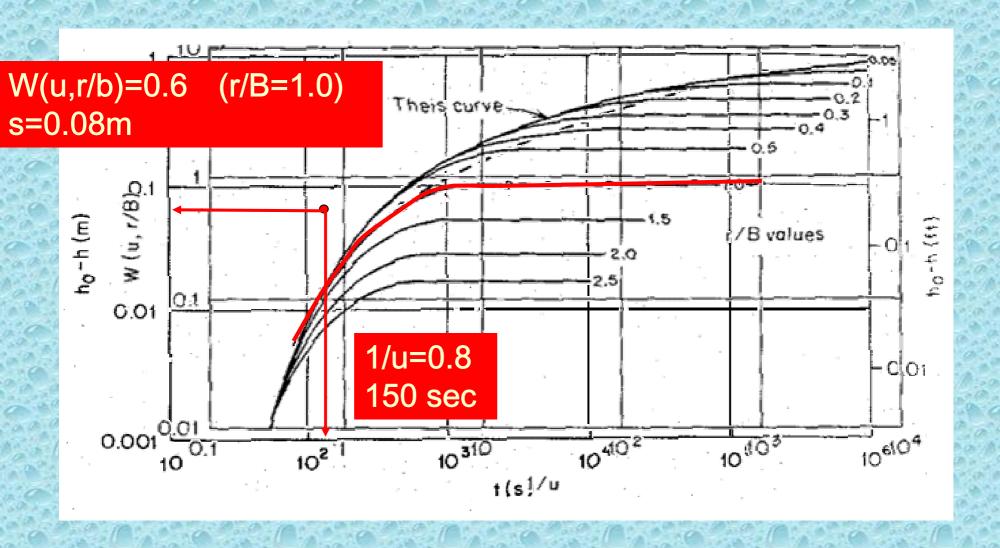
Solve for S₁ from

$$u = \frac{r^2 S}{4 T t}$$



Q=0.004 m<sup>3</sup>/sec r=55m

 $b_1 = 30.5 m$ b' = 3.05 m



Q=0.004 m<sup>3</sup>/sec r=55m

 $b_1 = 30.5 m$ b' = 3.05 m

# SUPERPOSITION APPLICATIONS

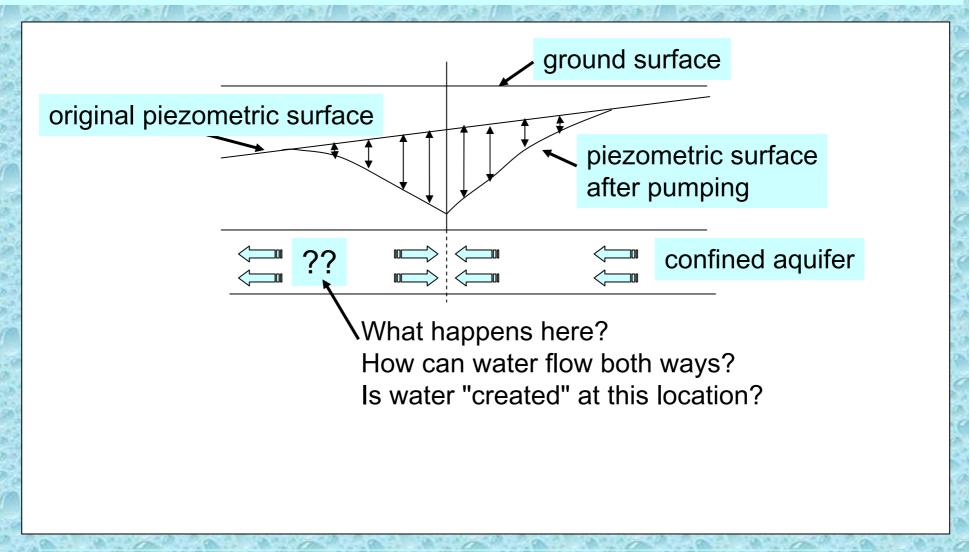
applicable to linear conditions (i.e. confined or unconfined if drawdown << aquifer thickness s<<br/>b)

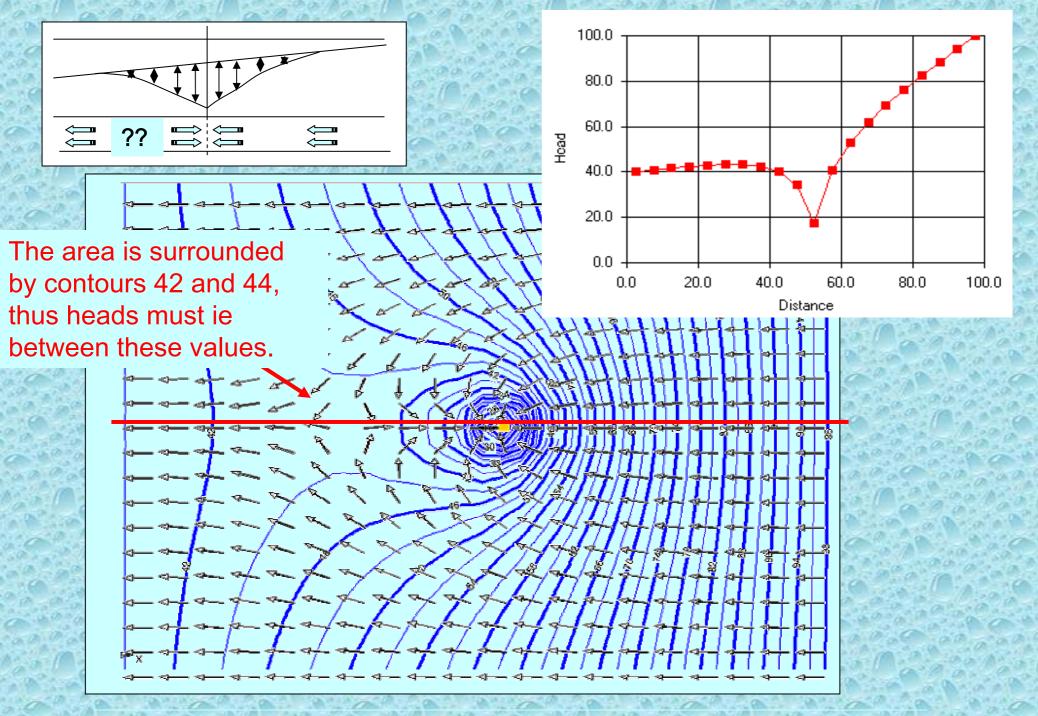
# **Utility of superposition**

- Impact of pumping on a flow field
- Image well theory
- Pumping from a number of wells
- Incremental Pumping
- Aquifer test recovery data

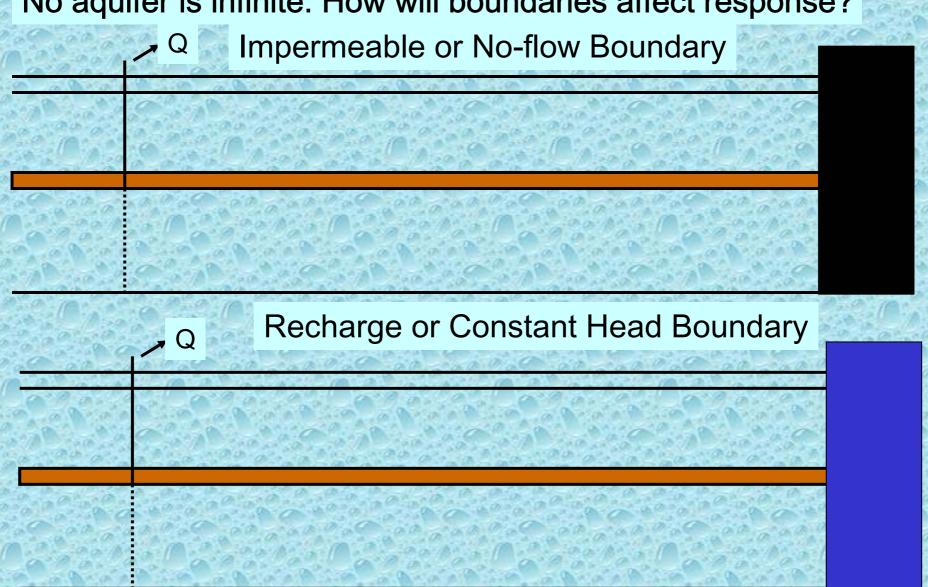
# IMPACT OF PUMPING ON A FLOW FIELD

Drawdown from pumping is superimposed on the initial flow field (i.e. subtract drawdown from undisturbed piezometric head)

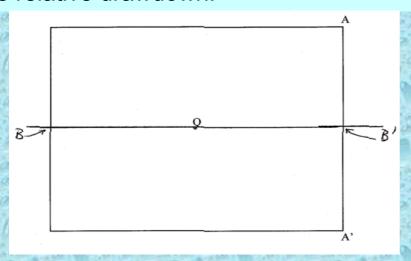




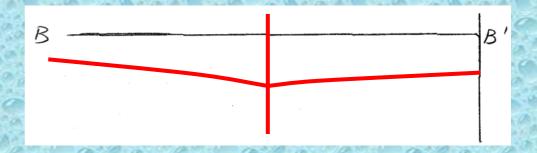
# IMAGE WELL THEORY Impact of Boundaries on drawdown as a function of time No aquifer is infinite. How will boundaries affect response?



For the following situation with pumping well Q make your qualitative estimates of the relative drawdown.

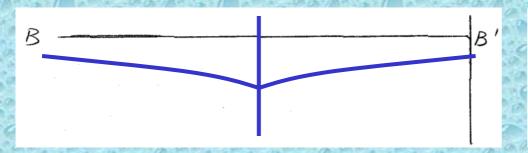


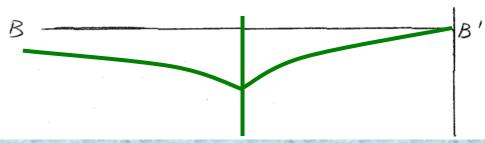
Sketch the cone of depression due to pumping of well Q assuming A-A' is a no flow boundary

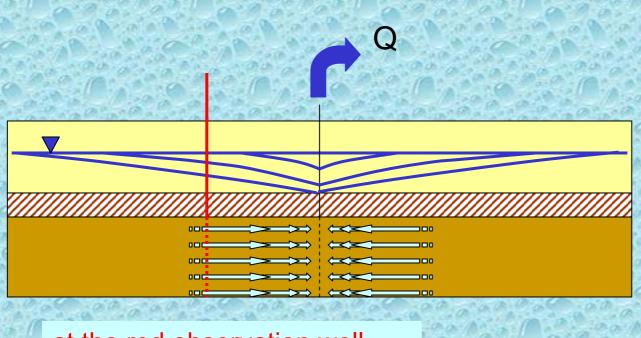


Sketch the cone of depression due to pumping of well Q assuming the aquifer is infinite

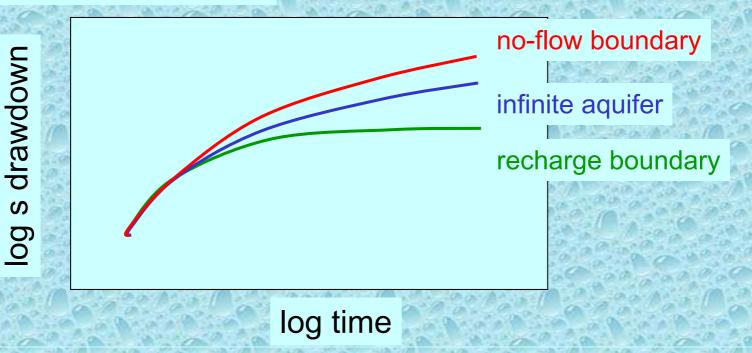
Sketch the cone of depression due to pumping of well Q assuming A-A' is a constant head boundary

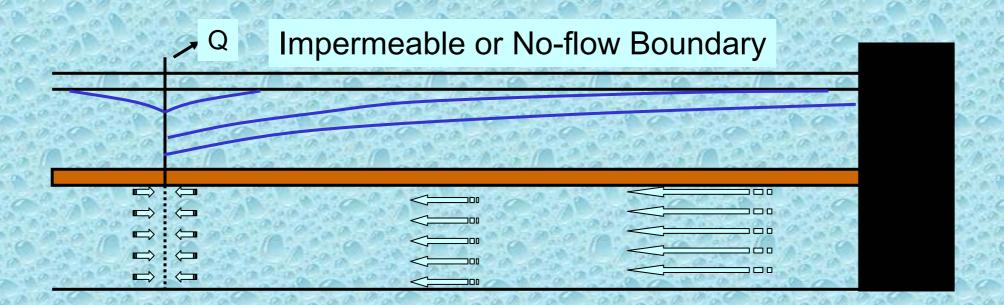






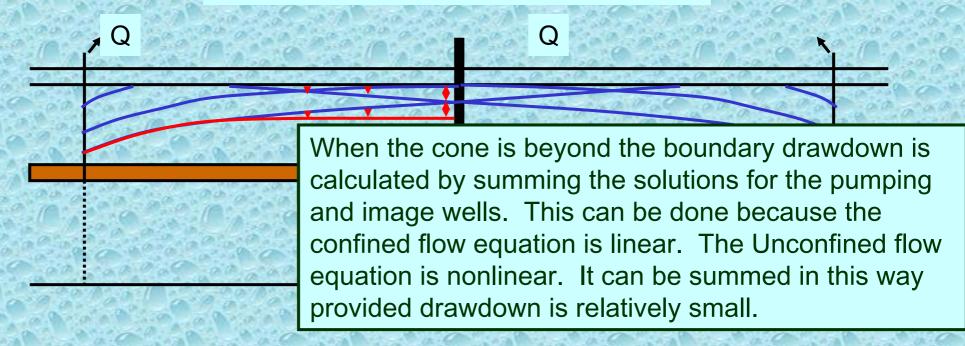
at the red observation well .....





When the drawdown cone reaches the boundary water cannot be drawn from storage in the infinite aquifer, so drawdown occurs more rapidly within the finite aquifer

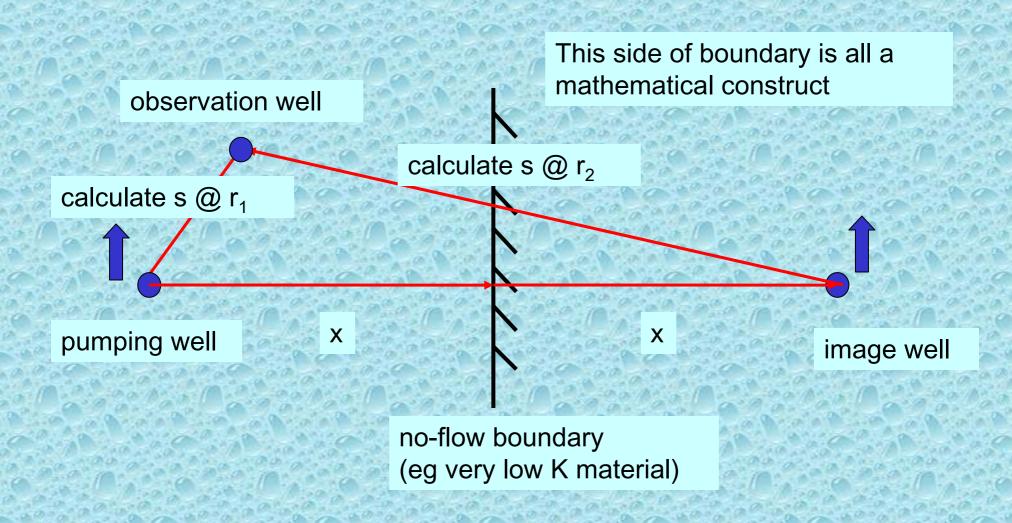
# Impermeable or No-flow Boundary



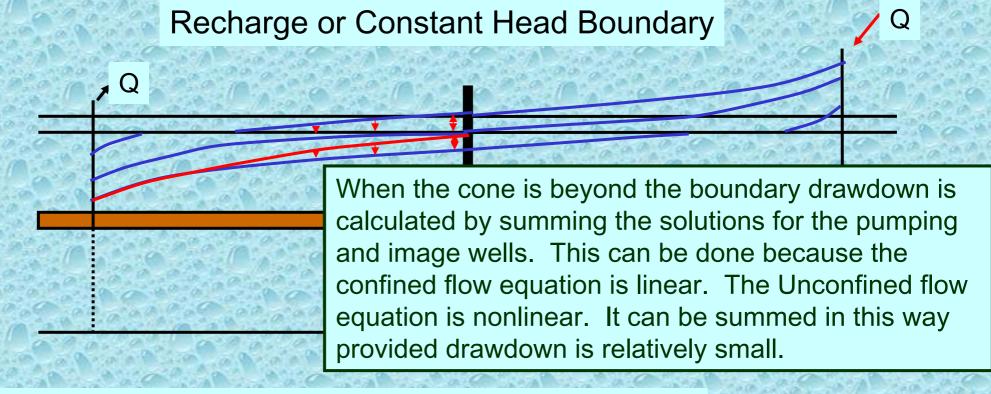
Method of Images - can be used to predict drawdown by creating a mathematical no-flow boundary NO-FLOW = NO GRADIENT

So if we place an imaginary well of equal strength at equal distance across the boundary and superpose the solutions, we will have equal drawdown, therefore equal head at the boundary, hence NO GRADIENT

# Plan View

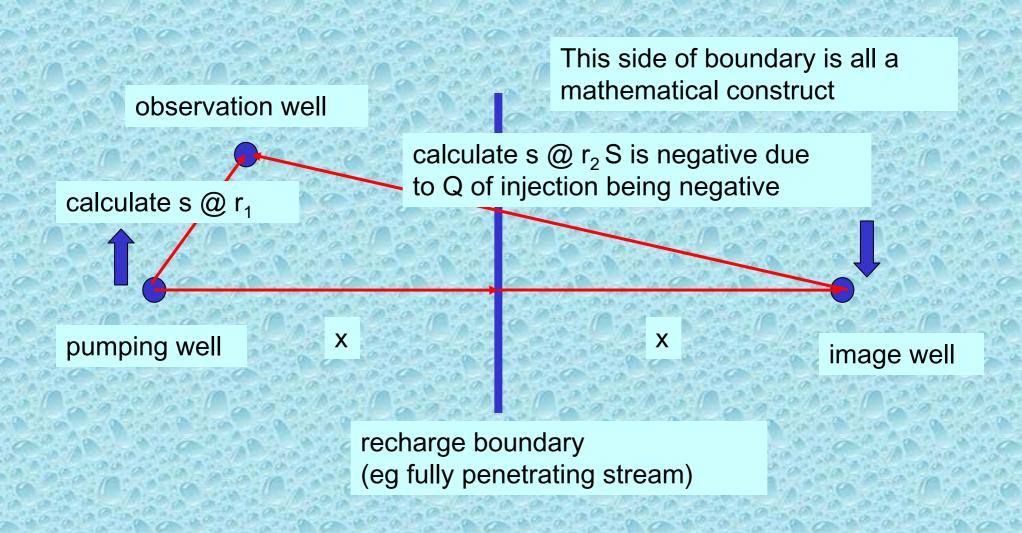


sum s @ r<sub>1</sub> and s @ r<sub>2</sub> drawdown is greater than without the boundary



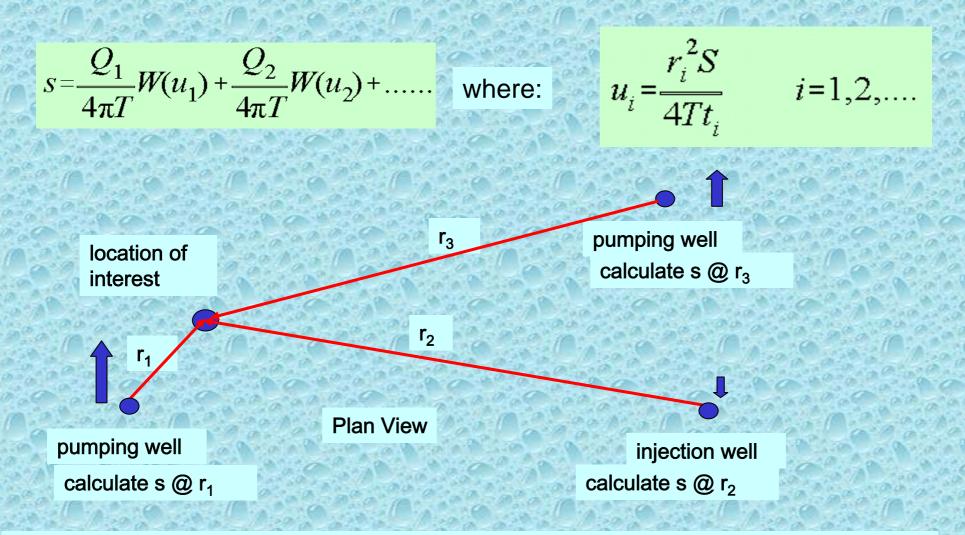
Method of Images - can be used to predict drawdown
by creating a mathematical constant head boundary
CONSTANT HEAD = NO CHANGE IN HEAD
So if we place an imaginary well
of equal strength but opposite sign
at equal distance across the boundary
And superpose the solutions
We will have
equal but opposite drawdown, therefore NO HEAD CHANGE

### Plan View



sum s @ r<sub>1</sub> and s @ r<sub>2</sub> drawdown is less than without the boundary

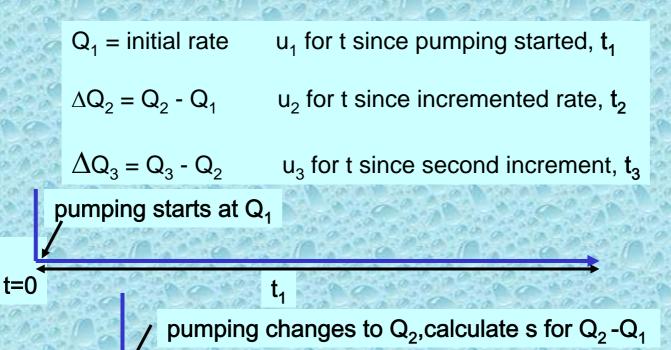
#### PUMPING FROM A NUMBER OF WELLS



sum  $s_1$  from  $Q_1@ r_1$   $s_2$  from  $Q_2@ r_2$  (note  $Q_2$  is negative)  $s_3$  from  $Q_3@ r_3$  .... etc etc .... yields total s at observation well

### **INCREMENTAL PUMPING**

$$s = \frac{Q_1}{4\pi T} W(u_1) + \frac{\Delta Q_2}{4\pi T} W(u_2) + \frac{\Delta Q_3}{4\pi T} W(u_3) \ ......$$



The sum of all three calculations yields s at t<sub>1</sub> for the varying flow rate

start

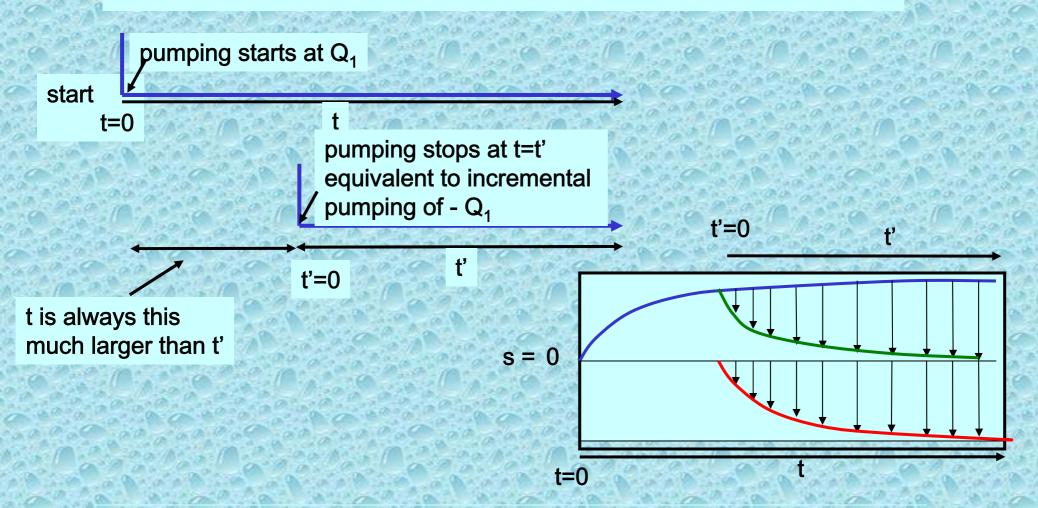
pumping changes to  $Q_3$  ,calculate s for  $Q_3 - Q_2$ 

 $t_3$ 

#### **AQUIFER TEST RECOVERY DATA**

adding drawdown from injection of -Q at the time when the pump is shut off

$$s' = \frac{Q}{4\pi T}W(u) - \frac{Q}{4\pi T}W(u') \qquad \text{for} \qquad u = \frac{r^2S}{4Tt} \qquad \qquad u' = \frac{r^2S}{4Tt'}$$



# For small u (small r, long t) the Cooper-Jacob relation can be used:

$$s' = \frac{2.3Q}{4\pi T} \left[\log \frac{2.25Tt}{r^2 S} - \log \frac{2.25Tt'}{r^2 S}\right] = \frac{2.3Q}{4\pi T} \log \frac{t}{t'}$$

# Plot of s' vs log(t/t') is a straight line

$$T = \frac{2.3Q}{4\pi\Delta s}$$

∆s over one log cycle t/t'