Well Hydraulics

The time required to reach steady state depends on
S(torativity) T(ransmissivity) BC(boundary conditions)
and Q(pumping rate).
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Well in an unconfined aquifer slmwmg
the meaning of the various terms used in the equi-

librium equation.
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Well in a confined aquifer showing the
meaning of various terms used in the equilibrium

equation.



Simplest Situation

Steady State, Confined, inflow balances outflow
Only relationships between drawdown and distance need be considered

Only Transmissivity matters and can be determined ... Storage
properties are irrelevant

The shape of the drawdown cone is controlled by pumping rate Q
and Transmissivity,
lower T requires a higher gradient for the same Q
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Darcy's Law Q=KIiA is satisfied on every cylinder around the
well, the gradient decreases linearly with distance from the
well as the area increases linearly



STEADY STATE, CONFINED

Assuming
e aguifer iIs homogeneous, isotropic, areally infinite
 pumping well fully penetrates and receives water
from the entire thickness of the aquifer
e Transmissivity is constant in space and time
 pumping has continued at a constant rate long enough
for steady state to prevalil
e Darcy's law Is valid

Plot s vs log r from a number of wells as follows



s vs.logr -is astraight line, if assumptions are met, drawdown
decreases logarithmically with distance form the well because gradient
decreases linearly with increasing area (2rrh)

s | T—wu_ Q=2"T(h2_h1) Theim Eqtn

In(r,/r)

log r

and rearranging to get
T from field data:
T = transmissivity [L%/T] Q i
Q = discharge from pumped well [L3/T] T= |n(—2)
r = radial distance from the well [L] 2mw(h,-hy) r,
h =head at r [L]




In an unconfined aquifer, T is hot constant

If drawdown is small relative to saturated thickness, confined
equilibrium formulas can be applied with only minor errors
Otherwise call on Dupuit assumptions and use:

: f.
h:-h2 or,todetermine 2
Q:ma(( 271 om field Q'”(r )
In(r,/r;)  measurements K= 1
of head: 1T(h22—h12)
Q
pumping well ; Aobservai:;ion weII1ation well 2
\’S{/SP— Q = pumping rate [L3/T]
B ; K = permeability [L/T]
— h, = head @ a distance r, from well [L]
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using the aquifer base as datum
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The aquifer base must be the datum because the head not only represents
the gradient but also reflects the aquifer thickness, hence the flow area.



More likely, vertical leakage will satisfy Q

with w = recharge rate, then:

W = recharge rate [L/T]
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We can include recharge in the expression:
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and solve for K: 2




Note the confined character of

p Qe aquifer.

! at the observation wells .....
N A
\\V—
: %,
C The red well will reflect the

A The aquifer is confined water level in the upper aquifer
because water levels in the and we will not know about any
bore that penetrates the of the blue water levels shown in
aquifer are above the top of the diagram.

the aquifer.



The Qualitative Viewpoint:

Infinite Aquifer, Initially hydrostatic

Water flows "more easily" in high T material vs low T, Thus for
the same Q
steeper gradients occur in low T material

Initially water is removed from storage near the well bore
If Sis high: we get more water
for the same drop in head
over the same area
compared with low S
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USING TRANSIENT RESPONSE OF SYSTEMS TO PUMPING

Benefits/Disadvantages

ecan estimate storativity values

when estimating aquifer properties, we get results at early time
scasier to detect extraneous effects

eanalysis is more complex

Assumptions

1. homogeneous, isotropic, infinite areal extent

2. pumping well fully penetrates and receives water from

the entire thickness of the aquifer

3. Transmissivity is constant in space and time

4. well has infinitesimal diameter

5. water removed from storage is discharged instantaneously
with decline in head
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Theis Equation
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Q r2s r2 4T
s=h -h=——W(u) =—— or
4T 4Tt i S

s = drawdown [L]

h, = initial head @ r [L]
h=headatrattimet]L]

t = time since pumping began [T]
r = distance from pumping well [L]
Q = discharge rate [L3/T]

T = transmissivity [L2/T]

S = Storativity [ ]
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Use of the Theis equation to determine T and S from a pumping test
matching the W(u) curve on a log-log plot s vs r?/t
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Cooper-Jacob simplified the Theis equation for large t and small r
using only the first 2 terms of the W(u) function

2
s=h0—h=iW(u) y=r-s
4T 4Tt
— _ e u?  ud ut
S = d_rgv.vdown L] Mup=[= du@m?z—lnu TR TR TR
h, = initial head @ r [L] i
h=head atr attimet[L] What is small?

t = time since pumping began [T]
r = distance from pumping well [L]
Q = discharge rate [L3/T]

T = transmissivity [L2/T]

S = Storativity [ |

W < 0 .0of

2.3Q g 2.207t - Simplified expression
41T r<S

L=



2.3Q 2.25T¢
S= log
qtr T r<s

Since Qr T & S are constant, s vs log t should be a straight line
then:

2.25TH
- 2.3Q o :

T
41T AR r?

where:
Ah = drawdown over 1 log cycle of time

t, = time intercept for zero drawdown
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Plot Ah vs log t (for one point in time) and use:
Ah drawdown over 1 log cycle

t, = time corresponding to Ah=0




LEAKY AQUIFERS
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N
E b, K; S, unpumped aquifer
J bKS/ aquitard previously K’ was zero
Q<— _ (i.e. no leakage)
= b, K, S, pumped aquifer
subscript 1 = pumped zone assume:
subscript 2 = unpumped aquifer no head change in shallow aquifer
prime = aquitard horizontal flow in aquifers
Q = pumping rate vertical flow in aquitards
b = thickness aquifer extends far enough to
K = hydraulic conductivity intercept enough leakage to satisfy Q
S, = specific storage Theis assumptions

(other than infinite aquifer) apply

Solution is similar to Theis Solution but well function is more complex



water level in shallow aquifer
— = Transients will occur as the

72 2B OB /777 head decrease moves up

" o through the aquitard. S and Kv
o : o of the aquitard will control the
7 A PO rate of progress.

will the red observation well look more like? .....

A no-flow boundary

|
B infinite aquifer
|
C recharge boundary

D none of the above

log s drawdown

log time



Hantush & Jacob 1955 , o
assumed no storage in the aquitard =7 -
. . B K.b.b
and expressed this solution
in terms of a dimensionless parameter
Tu r‘ :1:-::!
| 0.1
Theis curve — ﬂ?ﬁi
+— 0.4
'Li.ﬁ
{ —_— ] - ]
@ 1.0 ]
:; r/ B values
=
1 =
i
l
0.1 10? 104

1/ u




Curve match

W(u, r/B) r/B 1/u matched with s t $=F,-h=

Solve for K, from

Solve for K’ from

Solve for S, from

K1 = T/
I K’
B ’\ K1b1bf
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Q=0.004 m3/sec b,=30.5m
r=55m b’=3.05m
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SUPERPOSITION APPLICATIONS

applicable to linear conditions
(i.e. confined or unconfined if drawdown << aquifer thickness s<<b)

Utility of superposition

* Impact of pumping on a flow field
* Image well theory

 Pumping from a number of wells
 Incremental Pumping

» Aquifer test recovery data



IMPACT OF PUMPING ON A FLOW FIELD

Drawdown from pumping is superimposed on the initial flow field
(1.e. subtract drawdown from undisturbed piezometric head)

/ ground surface

original piezometric surface

><<II

< piezometric surface
after pumping

<—m ol
<—m \

nu:> <—m <—m
nu:> <—m <—m

confined aquifer

\What happens here?
How can water flow both ways?
|s water "created" at this location?
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IMAGE WELL THEORY
Impact of Boundaries on drawdown as a function of time

No aquifer is infinite. How will boundaries affect response?
~ Q  Impermeable or No-flow Boundary

Q Recharge or Constant Head Boundary
P




For the following situation with pumping
well Q make your qualitative estimates of
the relative drawdown.

A

A

Sketch the cone of depression due to
pumping of well Q assuming the aquifer is
infinite

Sketch the cone of depression due to
pumping of well Q assuming A-A’ is a no
flow boundary

Sketch the cone of depression due to
pumping of well Q assuming A-A’ is a
constant head boundary
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~ Q  Impermeable or No-flow Boundary
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When the drawdown cone reaches the
boundary water cannot be drawn from storage
in the infinite aquifer, so drawdown occurs
more rapidly within the finite aquifer




Impermeable or No-flow Boundary

»Q Q X

When the cone is beyond the boundary drawdown is

S calculated by summing the solutions for the pumping

and image wells. This can be done because the
confined flow equation is linear. The Unconfined flow
equation is nonlinear. It can be summed in this way
provided drawdown is relatively small.

Method of Images - can be used to predict drawdown
by creating a mathematical no-flow boundary

NO-FLOW = NO GRADIENT

So if we place an imaginary well

of equal strength

at equal distance across the boundary
and superpose the solutions, we will have
equal drawdown, therefore equal head at the boundary,

hence NO GRADIENT



Plan View

This side of boundary is all a

mathematical construct
observation well

Calculate s@r,

=t \Nﬁ

pumping well image well

no-flow boundary
(eg very low K material)

sums @ r, and s @ r, drawdown is greater than without the boundary



Recharge or Constant Head Boundary / Q

7 Q —A
e i I

When the cone is beyond the boundary drawdown is
— calculated by summing the solutions for the pumping
and image wells. This can be done because the
confined flow equation is linear. The Unconfined flow
equation is nonlinear. It can be summed in this way

provided drawdown is relatively small.

Method of Images - can be used to predict drawdown
by creating a mathematical constant head boundary
CONSTANT HEAD = NO CHANGE IN HEAD
So if we place an imaginary well
of equal strength but opposite sign
at equal distance across the boundary
And superpose the solutions
We will have
equal but opposite drawdown, therefore NO HEAD CHANGE



Plan View

This side of boundary is all a

. mathematical construct

observation well I
calculate s @ r, S is negative due

calculate s @ to Q of injection being negative

t/ !

- X X .
pumping well image well

recharge boundary
(eg fully penetrating stream)

sums @ r, and s @ r,drawdown is less than without the boundary



PUMPING FROM A NUMBER OF WELLS

2
_ @ 0, S .
§= W) + W) +...... where: = i=12
4rl Il L ATt
i
location of pumping well
interest calculate s @ r4
i :
_ Plan View
pumping well injection well
calculate s @ r, calculate s @ r,

sum s, from Q@ r, s, from Q,@ r,(note Q, is negative) s, from Q;@ r,
etc ..... yields total s at observation well



INCREMENTAL PUMPING

AQ,
AT

Y
AnT

W u,)+ L5 e

W)+
() AT

Q, =initial rate  u, for t since pumping started, t,

AQ, =Q,-Q, u, for t since incremented rate, t,

AQ,=Q,;-Q, u, for t since second increment, t,

pumping starts at Q,

start

. -3
t=0 t,
‘ / pumping changes to Q,,calculate s for Q, -Q,
<
The sum of all three t
calculations yields \/ pumping changes to Qg ,calculate s for Q;-Q,
s at t, for the varying -
flow rate < >

t,



AQUIFER TEST RECOVERY DATA
adding drawdown from injection of —Q at the time when the pump is shut off

Q LW@;J) for H:FES e 73S
4?'ET ATy AT7
j)umping starts at Q,
start >

t=0 t
pumping stops at t=t’
equivalent to incremental
pumping of - Q,

« » <

t is always this %
much larger than t’ s=0




For small u (small r, long t) the Cooper-Jacob relation can be used:

/
i Z.SQ[IOEZ.ZﬁTr _log2.25Tt 1= 2.3Q10gi
anl’ 728 r=S s t!

S

Plot of s’ vs log(t/t’) is a straight line

T 2.30Q
T AR

As over one log cycle t/t'



