
Well Hydraulics

The time required to reach steady state depends on 
S(torativity) T(ransmissivity) BC(boundary conditions) 
and Q(pumping rate).

• cone of depression
• static water level (SWL)
• drawdown
• residual drawdown
• radius of influence
• storage coefficient S
• transmissivity T



Simplest Situation
Steady State, Confined, inflow balances outflow
Only relationships between drawdown and distance need be considered

Only Transmissivity matters and can be determined ... Storage 
properties are irrelevant

Q

High T

Q

Low TSAME     Q:

The shape of the drawdown cone is controlled by pumping rate Q
and Transmissivity, 
lower T requires a higher gradient for the same Q

Darcy's Law   Q=KiA is satisfied on every cylinder around the 
well, the gradient decreases linearly with distance from the 
well as the area increases linearly



STEADY STATE, CONFINED

Assuming
• aquifer is homogeneous, isotropic, areally infinite
• pumping well fully penetrates and receives water
from the entire thickness of the aquifer

• Transmissivity is constant in space and time
• pumping has continued at a constant rate long enough

for steady state to prevail
• Darcy's law is valid

Plot s vs log r from a number of wells as follows



s vs. log r - is a straight line, if assumptions are met,  drawdown  
decreases logarithmically with distance form the well because gradient 
decreases linearly with increasing area (2πrh)

s

log r

Theim Eqtn

and rearranging to get
T from field data:

T = transmissivity [L2/T]
Q = discharge from pumped well [L3/T]
r = radial distance from the well [L]
h = head at r [L]



In an unconfined aquifer, T is not constant
If drawdown is small relative to saturated thickness, confined 
equilibrium formulas can be applied with only minor errors
Otherwise call on Dupuit assumptions and use:

r1

r2

observation well 1
observation well 2

pumping well
Q

s1

s2

or, to determine 
K from field 
measurements 
of head:

Q = pumping rate [L3/T]
K = permeability [L/T]
hi = head @ a distance ri from well [L]

using the aquifer base as datum

The aquifer base must be the datum because the head not only represents 
the gradient but also reflects the aquifer thickness, hence the flow area.



More likely, vertical leakage will satisfy Q 
with w = recharge rate, then:

Q W = recharge rate [L/T]

We can include recharge in the expression:

and solve for K:



Q Note the confined character of 
the aquifer.

1. How do you know it is confined? 

A Water levels in the bore that penetrates 
the aquifer are above the top of the 
aquifer.

B The aquifer is deep 
C Flow only occurs in the deep aquifer
D There is a clay zone overlying the aquifer

A The aquifer is confined 
because water levels in the 
bore that penetrates the 
aquifer are above the top of 
the aquifer.

2. If I drilled the red well, what water level would 
be reflected in the well bore? 
A It reflects one of the blue water levels 
depending how long it has been since pumping 
began
B It will be dry
C It will reflect the water level in the upper aquifer 
and we will not know about any of the blue water 
levels shown in the diagram.
D It will reflect both the shallow and deep water 
levels

at the observation wells …..

C The red well will reflect the 
water level in the upper aquifer 
and we will not know about any 
of the blue water levels shown in 
the diagram.



The Qualitative Viewpoint:

Infinite Aquifer, Initially hydrostatic

Water flows "more easily" in high T material vs low T, Thus for 
the same Q 

steeper gradients occur in low T material

Initially water is removed from storage near the well bore
If S is high: we get more water

for the same drop in head
over the same area

compared with low S



Sketch the relative drawdown cones for the cases below

Q Q

High S Low SSAME    T   Q   t:

Q Q

Low THigh T SAME    S   Q   t:



Q Q

different T yields different gradient at well bore
same S yields same volume drawdown cone

but shape varies given different gradient

SAME    T   Q    t :
Q Q

High S Low S

Low THigh T

Steady state:
T differences 
persist
S differences 
do not

same T yields same gradient at well bore
different S yields different volume drawdown cone

smaller S yields proportionally larger cone

SAME    S   Q    t :



USING TRANSIENT RESPONSE OF SYSTEMS TO PUMPING

Benefits/Disadvantages
•can estimate storativity values
•when estimating aquifer properties, we get results at early time
•easier to detect extraneous effects
•analysis is more complex

Assumptions
1. homogeneous, isotropic, infinite areal extent
2. pumping well fully penetrates and receives water from   
the entire thickness of the aquifer

3. Transmissivity is constant in space and time
4. well has infinitesimal diameter
5. water removed from storage is discharged instantaneously

with decline in head



r1

r2

observation well 1
observation well 2

pumping well
Q

s1
s2



Theis Equation

s = drawdown [L]
ho = initial head @ r [L]
h = head at r at time t [L]
t = time since pumping began [T]
r = distance from pumping well [L]
Q = discharge rate [L3/T]
T = transmissivity [L2/T]
S = Storativity [ ]
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Use of  the Theis equation to determine  T and S  from a pumping test
matching the W(u) curve on a log-log plot s vs r2/t
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Cooper-Jacob simplified the Theis equation for large t and small r
using only the first 2 terms of the W(u) function

s = drawdown [L]
ho = initial head @ r [L]
h = head at r at time t [L]
t = time since pumping began [T]
r = distance from pumping well [L]
Q = discharge rate [L3/T]
T = transmissivity [L2/T]
S = Storativity [ ]

Why are later terms not
needed?

u is small when r is small
and t is large, thus the latter
terms contribute little

What is small?                   

Simplified expression



Since Q r T & S are constant, s vs log t should be a straight line
then:

where:

∆h = drawdown over 1 log cycle of time

to = time intercept for zero drawdown



to

∆h

Plot ∆h vs log t (for one point in time) and use:
∆h drawdown over 1 log cycle
to = time corresponding to ∆h=0



LEAKY AQUIFERS

Q

unpumped aquifer

pumped aquifer 
aquitard

b2 K2 Ss2

b1 K1 Ss1

b’ K’ Ss’ previously K’ was zero
(i.e. no leakage)

subscript 1 = pumped zone
subscript 2 = unpumped aquifer
prime = aquitard

Q = pumping rate
b = thickness
K = hydraulic conductivity
Ss = specific storage

assume:
no head change in shallow aquifer
horizontal flow in aquifers
vertical flow in aquitards
aquifer extends far enough to 

intercept enough leakage to satisfy Q
Theis assumptions

(other than infinite aquifer) apply

What conditions justify assuming no head change in the shallow aquifer?A sufficiently permeable shallow aquifer such that flow to the “disk” above
the drawdown cone is low enough to require nearly zero gradient.Solution is similar to Theis Solution but well function is more complex



Q

What will happen that did 
not occur in the completely 
confined aquifer?

water level in shallow aquifer

Vertical leakage, first from 
storage in the aquitard, then
from the shallow aquifer.

What do we expect regarding
the magnitude of leakage?
Greatest leakage where head 
difference is largest,
decreasing away from the well.

What will be the maximum 
extent of drawdown?
Drawdown will be limited to the 
radius at which the entire Q 
leaks from the upper aquifer to 
the lower.

What controls the rate of 
drawdown cone development?

Transients will occur as the 
head decrease moves up 
through the aquitard. S and Kv
of the aquitard will control the 
rate of progress.

will the red observation well look more like? …..
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C recharge boundary

B infinite aquifer

A no-flow boundary

D none of the above



Hantush & Jacob 1955
assumed no storage in the aquitard
and expressed this solution
in terms of a dimensionless parameter



Curve match
W(u, r/B)  r/B  1/u   matched with   s  t

Solve for K1 from

Solve for K’ from

Solve for S1 from



Q=0.004 m3/sec b1=30.5m 
r=55m b’=3.05m



W(u,r/b)=0.6 (r/B=1.0)
s=0.08m

1/u=0.8
150 sec

Q=0.004 m3/sec b1=30.5m 
r=55m b’=3.05m



SUPERPOSITION APPLICATIONSSUPERPOSITION APPLICATIONS

applicable to linear conditions 
(i.e. confined or unconfined if drawdown << aquifer thickness  s<<b)

Utility of superposition

• Impact of pumping on a flow field

• Image well theory

• Pumping from a number of wells

• Incremental Pumping

• Aquifer test recovery data



IMPACT OF PUMPING ON A FLOW FIELD
Drawdown from pumping is superimposed on the initial flow field 

( i.e. subtract drawdown from undisturbed piezometric head)

ground surface

confined aquifer

original piezometric surface

??

What happens here?
How can water flow both ways?
Is water "created" at this location?

piezometric surface
after pumping



??

From the contours of 
head, how do you know 
the head is higher than 42 
in this area?

The area is surrounded 
by contours 42 and 44, 
thus heads must ie
between these values.



Q Impermeable or No-flow Boundary

Q Recharge or Constant Head Boundary

IMAGE WELL THEORY 
Impact of Boundaries on drawdown as a function of time

No aquifer is infinite. How will boundaries affect response?



For the following situation with pumping 
well Q make your qualitative estimates of 
the relative drawdown. Sketch the cone of depression due to 

pumping of well Q assuming A-A’ is a no 
flow boundary

Sketch the cone of depression due to 
pumping of well Q assuming the aquifer is 
infinite

Sketch the cone of depression due to 
pumping of well Q assuming A-A’ is a 
constant head boundary



Q

at the red observation well …..
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recharge boundary

infinite aquifer

no-flow boundary



Q Impermeable or No-flow Boundary

When the drawdown cone reaches the 
boundary water cannot be drawn from storage 
in the infinite aquifer, so drawdown occurs 
more rapidly within the finite aquifer



Impermeable or No-flow Boundary
Q Q

Before the drawdown cone reaches the boundary the 
drawdown curve is as predicted by the Theis equation
When the cone reaches the boundary this is the last 
moment that the drawdown curve will be as predicted 
by the Theis equation. Note drawdown from both wells 
is equal thus there is no difference in head across the 
boundary, so the gradient is zero and there is no flow.

When the cone is beyond the boundary drawdown is 
calculated by summing the solutions for the pumping 
and image wells.  This can be done because the 
confined flow equation is linear.  The Unconfined flow 
equation is nonlinear.  It can be summed in this way 
provided drawdown is relatively small. 

Method of Images - can be used to predict drawdown 
by creating a mathematical no-flow boundary
NO-FLOW = NO GRADIENT
So if we place an imaginary well 

of equal strength 
at equal distance across the boundary

and superpose the solutions, we will have 
equal drawdown, therefore equal head at the boundary, 
hence NO GRADIENT



Plan View

image well

r2 
r1 

pumping well

observation well

This side of boundary is all a 
mathematical construct

x x

calculate s @ r1 

calculate s @ r2 

no-flow boundary 
(eg very low K material)

sum s @ r1  and s @ r2 drawdown is greater than without the boundary



Q

Recharge or Constant Head Boundary Q

Before the drawdown cone reaches the boundary the 
drawdown curve is as predicted by the Theis equation
When the cone reaches the boundary this is the last 
moment that the drawdown curve will be as predicted 
by the Theis equation. Note drawdown equals drawup
thus the head has not changed at the boundary.

When the cone is beyond the boundary drawdown is 
calculated by summing the solutions for the pumping 
and image wells.  This can be done because the 
confined flow equation is linear.  The Unconfined flow 
equation is nonlinear.  It can be summed in this way 
provided drawdown is relatively small. 

Method of Images - can be used to predict drawdown 
by creating a mathematical constant head boundary
CONSTANT HEAD = NO CHANGE IN HEAD
So if we place an imaginary well

of equal strength but opposite sign
at equal distance across the boundary

And superpose the solutions
We will have 
equal but opposite drawdown, therefore NO HEAD CHANGE



Plan View

image wellpumping well

observation well

r2 
r1 

This side of boundary is all a 
mathematical construct

x x

calculate s @ r1 

calculate s @ r2 S is negative due 
to Q of injection being negative

recharge boundary 
(eg fully penetrating stream)

sum s @ r1  and s @ r2 drawdown is less than without the boundary



PUMPING FROM A NUMBER OF WELLS

where:

location of 
interest

Plan View

r1 

pumping well
calculate s @ r1 

r2 

injection well
calculate s @ r2 

r3 pumping well
calculate s @ r3 

sum  s1 from Q1@ r1     s2 from Q2@ r2 (note Q2 is negative) s3 from Q3@ r3    ….. etc 
etc ….. yields total s at observation well



INCREMENTAL PUMPING

start
t=0

Q1 = initial rate       u1 for t since pumping started, t1

∆Q2 = Q2 - Q1 u2 for t since incremented rate, t2

∆Q3 = Q3 - Q2 u3 for t since second increment, t3

t1

pumping starts at Q1

pumping changes to Q2,calculate s for Q2 -Q1 

t2The sum of all three
calculations yields
s at t1 for the varying
flow rate

pumping changes to Q3 ,calculate s for Q3 –Q2 

t3



AQUIFER TEST RECOVERY DATA
adding drawdown from injection of –Q at the time when the pump is shut off

start
t=0 t

pumping starts at Q1

t’

pumping stops at t=t’
equivalent to incremental 
pumping of - Q1

t’=0
t is always this 
much larger than t’

t

s = 0

t=0

t’t’=0



For small u (small r, long t) the Cooper-Jacob relation can be used:

Plot of s’ vs log(t/t’) is a straight line

∆s over one log cycle t/t'


