The first iterative methods used for solving large linear sysiems were based on relaxation
of the coordinates. Beginning with a given approximate solution, these methods modify
the components of the approximation, one or a few at a time and in a certain order, until
convergence is reached. Each of these modifications, calléd relaxation steps, is aimed at
annihilating one or a few components of the residual vector. Now these techniques are rarely
used separately. However, when combined with the more efficient methods described in
later chapters, they can be quite successful. Moreover, there are a few application areas
where variations of these methods are still quite popular.

4.1 Jacobi, Gauss—Seidel, and Successive Overrelaxation

This chapter begins by reviewing the basic iterative methods for solving linear systems.
Given an n x »n real matrix A and a real n-vector b, the problem considered is as follows:
Find x belonging to R" such that

Ax =b. 4.1

Equation (4.1) is a linear system, A is the coefficient matrix, b is the right-hand side vector,
and x is the vector of unknowns. Most of the methods covered in this chapter involve passing
from one iterate to the next by modifying one or a few components of an approximate
vector solution at a time. This is natural since there are simple criteria when modifying a
component in order to improve an iterate. One example is to annihilate some component(s}
of the residual vector # — Ax. The convergence of these methods is rarely goaranteed for
all matrices, but a large body of theory exists for the case where the coefficient matrix arises
from the finite difference discretization of elliptic partial differential equations (PDEs).
We begin with the decomposition

A=D-E-F, (4.2)
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_E its strict lower part, and —F its strict upper part, as

. . . . £ A .
tmwhich D s e s assumed that the diagonal entries of A are all nonzero.

illustrated in Figure 4.1, Ttis alway

Figure 4.1. Initial partitioning of matrix A.

I he .laC()hl iter t()n deterln“le the I[]l compo ent Of The ﬂeXt app]fOXl.El‘lathn SO as to
Of the ISSIdLla]. bGCtOI. III Ehe fOHO Wlllg, ’g.f dSIIOtSS ﬂle lth

ihilate the ith component . : e i
f:igglonent of the iterate x; and f; the {th component of the right-hand side b. Thus, writing

43
(& — Axira); = 0, (4.3)
in which (y); represents the ith component of the vector ¥, yields
n
(3
aiisi(k+1) == Zaij“::} '+ Bi
T
or
! Caged |, = . (4.4)
S[_{.TH-E):;I— ﬁtﬂ—Zauéj . l—l,...,?’l

i oy

e Jacobi iteration. All components of the next iterate

is 1 ~wise form of th . .
T oo nto The above notation can be used to rewrite the Jacobi

can be grouped into the Vector Xg+1.
iteration (4.4) in vector form as

xpqy = DTHE + F)xe + Db, 4.5

n corrects the ith component of the current approx-
n, again to annihilate the ith component of the
ate solution is updated immediately after the new

Similarly, the Ganss—Seidel iteratio
imate solution, in the order i=1,2,
residual, However, this time the approxXim:

W i=1,2 n, can be

i i ted components &, i = 1, % ..o 7

mnonent is determined. The newly compu ; -
zﬁanpged within a working vector that is redefined at each relaxation step. Thus, since the

orderisi = 1,2, ..., the result at the ith step is
R
- k+1) g . 4.6)
Bi — Zaij$}k+l) — aE Y - Z aijE; =0, (

j=1 =i+l
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which leads to the iteration

1 i—1 "

é,-(k+1) = — wzaij£}k+l) _ Z afjsj(k) +81i=1...,n (4.7

Gii =1 Jeit
The defining equation (4.6) can be written as
b+ Exe1— Dxpy1 + Fxp =0,
which leads immediately to the vector form of the Gauss—Seidel iteration
Xpr1 = (D — EY 'Fx + (D — E)7'b. {4.8)

Computing the new approximation in (4.5) requires muitiplying by the inverse of the
diagonal matrix D. In (4.8) a triangular system must be solved with D — E, the lower
triangular part of A. Thus, the new approximation in a Gauss—Seidel step can be determined
either by solving a triangular system with the matrix D — E or from the relation (4.7).

A backward Gauss—Seidel iteration can also be defined as

(D - F)ka = Exk + b, (49)

which is equivalent to making the coordinate corrections in the order n,n — 1,...,1, A
symmetric Gauss—Seidel iteration consists of a forward sweep followed by a backward
sweep.
The Jacobi and the Gauss—Seidel iterations are both of the form
Mxp 1 =Nxp+b=(M— Ax + b, {4.10)
in which
A=M-N (4.11)
is a splitting of A, with M = D for Jacobi, M = D — E for forward Gauss—Seidel, and

M = D — F for backward Gauss—Seidel. An iterative method of the form (4.10)} can be
defined for any splitting of the form (4.11) where M is nonsingular. Overrelaxarion is based

on the splitting
wA = (D — wE) — (wF + (1 —w)D),
and the corresponding successive overrelaxation (SOR) method is given by the recursion
(D — wE)xp = [wF + (1 — w}Dlx; + wb. (4.12)
The above iteration corresponds to the relaxation sequence
XV =g+ (1 —w)E®,  i=1,2,....n,

in which £° is defined by the expression on the right-hand side of (4.7). A backward SOR
sweep can be defined analogously to the backward Gauss—Seidel sweep (4.9).

A symmetric SOR (SSOR) step consists of the SOR step (4.12) followed by a backward
SOR step:

(D —wE)xip = [0F + (1 — @) Dx, + ob,

(D — 0F) 11 = [0 + (1 — @) Dlxyy1)2 + 0b.
This gives the recurrence
Tt = GoXie + fo
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where
Gom®7 wFi_(llgw—szgilzww;T (1 —w)D), (4.13)
fo =D ~oF) (I +[wE+ (1 -o)DID - wE)™")b. (4.14)
Observing that

= [—(D —wE)+ 2 —w)DID — wE)™!

(wE + (1 — @)D1(D — wE)™ .
=1+ Q2—-o)DD-wE) ",

f., can be rewritten as
fo=w@—a)D - wF) DD ~ wE)"'b.

4.1.1 Block Relaxation Schemes

Block relaxation schemes are generalizations of the point rclaxgti;rll schelélescctisszr;bt;i
ts at each time, typically a subve

above. They update a whole set of componen | asul ; ¢

solution vegtor, instead of only one component. The matrix A and the right hand side and

solution vectors are partitioned as follows:

An An An - Ap §1 121
Ay Ax Axp - Ay 2 : 2

A=|An An Am - A | x=| 8| b= ﬁf3 , (%_15)
Ap App 0 App Ep Bp

artitionings of b and x into subvectors B; and & are identical and compatible

in which the p ector x partitioned as in (4.15),

with the partitioning of A. Thus, for any v
»
(Ax); = EAijEj,
=1

in which (v); denotes the ith component of the vector y according to th

The diagonal blocks in A are square and assumed m‘m_singular.
Now define, similarly to the scalar case, the splitting
A=D—E—F,
with A
D= Am , .16)
App
o 0O An Aip
A o o Azp
E=— 2 ! » F=- -

0

Ap Apm - O

e above partitioning.
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With these definitions, it is easy to generalize the previous three iterative procedures defined
earlier, namely, Jacobi, Gauss—Seidel, and SOR. For example, the block Jacobi iteration is
now defined as a technique in which the new subvectors &, ) are all replaced according to

A = (E+ Fyxo; + B
ar
TV = A (E+ Px) + A7'B, i=1,....p,
which leads to the same equation as before:
Xpp1 = D7YE + FYxi + Db,

except that the meanings of D, E, and F have changed to their block analogues.

With finite difference approximations of PDEs, it is standard to block the variables
and the matrix by partitioning along whole lines of the mesh. For examptle, for the two-
dimensional mesh illustrated in Figure 2.5, this partitioning is

Hi1 oy U3
H12 U i3z
S=lusl, &=tun]|, &= un
Hi4 U4 e
K15 U5 s

This corresponds to the mesh in Figure 2.5 of Chapter 2, whose associated mairix pattern
is shown in Figure 2.6. A relaxation can also be defined along the vertical instead of the
horizontal lines. Techniques of this type are often known as line relaxation techniques.

In addition, a block can also correspond to the unknowns associated with a few con-
secutive lines in the plane. One such blocking is illustrated in Figure 4.2 for a 6 x 6 grid.
The corresponding matrix with its block structure is shown in Figure 4.3. An important dif-
ference between this partitioning and the one corresponding to the single-line partitioning
is that now the matrices A;; are block tridiagonal instead of tridiagonal. As a result, solving

G2 —i33) G2 Py
E—— s
3> B (5 R 4 P
C——Lo—C)—L)——9—00
——er———)

) {(3) () a6 A5 A
O—O—O——0—0
) ({3} o /i -
O—O——0——©®

Figure 4.2. Partitioning of a 6 x 6 square mesh into three sub-
domains.
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Figure 4.3. Matrix associated with the mesh of Figure 4.2.

linear systers with A; may be much more expensive. On I‘:he other }La;ndi{tl?:;;zﬁlézz :Sf

iterations required to achieve convergence oftel? decreases rapidly as the lock si i blocké
Finally, block techniques can be defined in more general terms. F;rlslt, w::h e bloce

that allow us to update arbitrary groups of componen:ts., and second, we allow e locks 0

overlap. Since this is a form of the domain decqmposmon method that will be Teextl am‘} e

define the approach carefully. So far, our pz];rtiuor; hag been b;sei f; ieaé:g;z , :ii, npthat o

iable set § = {1, 2, ..., n}into subsets 5y, 92, -~ s Pps.

gf:t};ﬁ;a;?)zets are disj{oint. In set theory, this is c‘allle(.:l a partition of §. M{;Jre' ;gfane;*aslliz;g

set decomposition of § removes the constraint of disjointness. In othgr words, it is req

that the union of the subsets S; be equal to S:

sscs, | s=s

i=l,...,p

In the following, n; denotes the size of §; and the subset S; is of the form
S; = {mi (1), mi(2), ..., mi(ni)}.
A general block Jacobi iteration can be defined as follows. Let V; bethe n X 1 matrix
Vi = [emty, €m@)s - - -» Emiu)

and let

W; = e 1yme(1)s T @)€mi@ys - -+ » M) Emut s
where each e; is the jth column of the n x n identity matrix and 1, (;) represents a weight
factor chosen so that WiTVi _,
When there is no overlap, i.e., when the §;"s fo_rm a partition of the whole set {1,2,...,nkL
then define nm,jy = 1-
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Let A;; be the iz; x n; matrix
Ay = WIAV,
and define similarly the partitioned vectors
£ =W'x, p=Wbh

Note that V; W is a projector from R” to the subspace X; spanned by the columns
m; (1), ..., m; (). In addition, we have the relation

x = Zs: Vié:.
i=1

The n;-dimensional vector W7 x represents the projection V; W/ x of x with respect to the
basis spanned by the columns of ¥;. The action of V; performs the reverse operation. That
means V; y is an extension operation from a vector y in K; (represented in the basis consisting
of the columns of V;) into a vector V;y in R". The operator W is termed a restriction
operator and V; is a prolongation operator.

Each cormponent of the Jacobi iteration can be obtained by imposing the condition that
the projection of the residual in the span of §; be zero; i.e.,

Wi lb—A|ViW iz + Y ViWin ] | =0.
J#E
Remember that §; = Wfﬁc, which can be rewritten as
éi(r'c+1) — si{k) 4 A;_IIWJ;T(b _ A.Xk). (4'17)

This leads to the following algoﬁthm.

ALGORITHM 4.1. General Block Jacobi lteration

1. Fork=0,1,..., until convergence, Do

2 Fori=1,2,...,p; Do P

3 - Solve A,‘faf = Wir(b - Axk)
4, Set xpr1 1= x + Vid;

5 EndDo

6. EndDo

As was the case with the scalar algorithms, there is only a slight difference between
the Jacobi and Gauss—Seidel iterations. Gauss—Seidel immediately updates the component
to be corrected at step i and uses the updated approximate solution to compute the residual
vector needed to correct the next component. However, the Jacobi iteration uses the same

previous approximation x; for this purpose. Therefore, the block Gauss—Seidel iteration
can be defined algorithmically as follows.
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ALGORITHM 4.2, General Block Gauss-Seidel Iteration

1. Until convergence, Do
Fori =1,2,...,p. Do

%. Solve A;;8; = W (b — Ax)
4. Setx = x + Vié;

5 EndDo

6. EndDo

i i :del is more economical because the new
int of view of storage, Gauss—Seidel 18 _ !
e aion r the same vector. Also, it typically converges faster.

jmation can be overwritten ove : :
D o othor has some appeal on parallel computers, S10¢e the sec

ther hand, the Jacobi iteration .
Ondﬂ;oolozp corresponding to the p different blocks, can be e.xecuted in pafallel. gllthouil;
f‘r?e point J ac;bi algorithm by itself is rarely a successful technique for real-life problems,

block Jacobi variant, when using large enough overlapping blocks, can be quite attractive,
especially in a parallel computing environment.

4.1.2 lteration Matrices and Preconditioning

The Jacobi and Gauss—Seidel iterations are of the form

Xierr = Gxe + (4.18)

in which
Ga(A)=1—-DT'A, (4.1{9))
Ggs(A)=1—(D— E)Y7'A, (4.20)

for the Jacobi and Gauss-Seidel iterations, respectively. Moreover, given the matrix split-
e A=M-—-N 4.21)

where A is associated with the linear system (4.1), a linear fixed-point iterafion can be

he recurrence
defined by the re o U . @)
which has the form (4.18) with
G=M'N=MYM-A=I- M~A, f=Mh (4.23)

Bed ‘
ii i =A— Gauss—Seidel
For example, for the Jacobi iteration, M=DN=A ’F‘”D, while for the

i i ,MﬁD—E,N:M-A:F. _ I '
nerat’ll‘?lz iteration x4 = Gx + f canbe viewed 4s a technigue for solving the system

(I-Gx=f

Since G hasthe form G =1~ M -14 this system can be rewritten as

M~1Ax = M7 'b.
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The above system, which has the same solution as the original system, is called a precon-
ditioned system and M is the preconditioning matrix or preconditioner. In other words, a
relaxation scheme is equivalent to a fixed-point iteration on a preconditioned system.

For example, for the Jacobi, Gauss—Seidel, SOR, and SSOR iterations, these precon-
ditioning matrices are, respectively,

M4 =D, (4.24)
Mgs =D - E, 4.25)
1
Msor = —(D — wE), (4.26)
w
1
Mssor = ———— (D — wE)D™ (D — wF). 4.27)
w2 —w)

Thus, the Jacobi preconditioner is simply the diagonal of A, while the Gauss—Seidel precon-
ditioner is the lower triangular part of A. The constant coefficients in front of the matrices
Mg r and Mggor only have the effect of scaling the equations of the preconditioned system
uniformly. Therefore, they are unimportant in the preconditioning context.

Note that the “preconditioned” system may be a full system. Indeed, there is no reason
why M~ should be a sparse matrix (even though M may be sparse), since the inverse of
a sparse matrix is not necessarily sparse. This limits the number of techniques that can
be applied to solve the preconditioned system. Most of the iterative techniques used only
require matrix-by-vector products. In this case, to compute w = M ~! Av for a given vector
v, first compute r = Av and then solve the system Mw = r:

F = A'U,
w=Mr

In some cases, it may be advantageous to exploit the splitting A = M — N and compute
w=M"1Avasw = (I — M~ N)v by the procedure

r = Ny,
w=M_1r,
wi=7v—w.

 The matrix N may be sparser than A and the matrix-by-vector product Nv may be less

expensive than the product Av. A nember of similar but somewhat more complex ideas
have been exploited in the context of preconditioned iterative methods. A few of these will
be examined in Chapter 9.

4.2 Convergence
All the methods seen in the previous section define a sequence of iterates of the form
Xkl = ka + f, (428)

in which G is a certain iteration matrix. The questions addressed in this section are as
follows: (a) If the iteration converges, then is the limit indeed a solution of the original
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system? (b) Under which conditions does the iteration converge? (c) When the iteration

does converge, how fast is it?
If the above iteration cOnNverges, its limit x satisfies

x=Gx+ f- (4.29)
In the case where the above iteration arises from the spliiting A = M — N,itiseasy to see
that the solution x to the above system is identical to that of the original system Ax = b.
Indeed, in this case the sequence (4.28) has the form
Xpt1 = M7'Nx. + M~ 'b
and its limit satisfies
Mx=Nx+b

or Ax = b. This answers question (a). Next, we focus on the other two guestions.

4.2.1 General Convergence Result

If I — G is nonsingular, then there is a solution x, to (4.29). Subtracting (4.29) from (4.28)

yields
Xpol — X = Gl — X)) = - = G (g — %) (4.30)

Standard results seen in Chapter 1 imply that, if the spectral radius of the iteration matrix &
is less than unity, then xp — X« converges t0 Zero and the iteration (4.28) converges toward
the solution defined by (4.29). Conversely, the relation

st — x5 = Gl —xpp) = - = G =T~ Gx0)

shows that if the iteration CONVerges for any xo and f, then GFu converges to zero for any
vector v. As a result, p(G) must be less than unity and the following theorem is proved.

Theorem 4.1. Let G be a square matrix such that p(G) < L. Then I — G is nonsingular
and the iteration (4.28) converges for any f and Xo- Conversely, if the iteration (4.28)

converges for any f and xo, then p(G) < 1.

Since it is expensive to compute the spectral radius of a matrix, sufficient conditions
that guarantee convergence cal be useful in practice. One such sufficient condition could
be obtained by utilizing the inequality p(G) = Gl for any matrix norm.

Corollary 4.2. Let G be a square matrix such that |G\ < 1 for some matrix norm il - |-
Then I — G is nonsingular and the iteration (4.28) converges for any initial vector xo.

Apart from knowing that the sequence (4.28) converges, it is also desirable to know
how fast it cOnverges. The exror d = Xp — X4 4t Step k satisfies
dy, = G*dp.
The matrix G can be expressed in the Jordan canonical formas G = X JXx . Assume for

simplicity that there is only one eigenvalue of G of largest modulus and callit A. Then

J k
dip = X (I) X~ 'dy.
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A careful i
ul look at the powers of the matrix J/A shows that all its blocks, except the block

assocla ed g con TO as k teIldS EO ﬁI]lty [8)
3 T

Ji=A+E,
where E is nilpotent of index p: ie., E# = 0. Then, fork > p
J'k — (}\.I k k =
¥ = +E) :}.(I‘i‘)u‘]E)k:lk Zlnz(k)E[)

i=0 !

Ifki i
is large enough, then for any A the dominant term in the above sum is the last term; i.e

JE A pfptl ( k Fr-1
p—1 '

Thus, the norm of di = G*dy has the asymptotical form

||dk||%Cx|kk‘P+1|( k
p-1/

where C i
¢ C is some constant. The convergence factor of a sequence is the limit
1/k
b fim (Hdku) |
k=00 \ fidp|

It follows from the above analysi
. ysis that p = p{(G). Th .
logarithm of the inverse of the convergence g (C to)r: e convergence rate T is the (natural)

T =—Ing.

0s S0 1t ma be [e]lllf‘:d a Spectﬁﬂ
con EIgEIlL‘E fa[:t[]]:. llge IEJCH con EI‘gEIl:E le:t[l can EtlS: ts dEfinEd t}

1/k
o= tim {max 10
koo xaeRu E!doli

6 = lim (max 1640t ) "
koo \ g ildoll

= lim (§G*1)"* = p(G).

This factor satisfies

Thus, the glob i

s, the gTheal 2sym[§tot1c convergence factor is equal to the spectral radius of the iteration

matr doe; . thg neral convergence rate differs from the specific rate only when the initial
ot have any components in the invariant subspace associated with the dorm'nalnt

eigenvalue. Since it i is i i
cigeny it 1§ hard to know this information in advance, the general
ctor is more useful in practice. | e COTEIEEEE
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Example 4.1. Consider the simple example of Richardson’s iteration,

xpa1 = xp +alb — Axp), 4.31)
where o is 2 nonnegative scalar. This iteration can be rewritien as
X1 = — aA)x, + ab. ) {4.32)

_ aA and the convergence factor is p(I —aA). As-

e iteration matrix is Go = T
T ., n, are all real and such that

sume that the eigenvalues A;, 1 = 1,..

}‘min = )\i = A-qu-

Then the eigenvalues p; of Go are such that
1 —admax =t = 1 — cthmin.

i i fue is greater than 1, and so
icular, if Apin < 0 and Apax > 0, at feast one eigenva an |
In(gar)uiul for ann;r w. In this case the method will always diverge for some initial dgilt{esss.
I[iet udS assume that all eigenvalues are positive; L.e., Amin > 0. Then the following condition
must be satisfied in order for the method to converge:

I — 0Amin < 1,

1 — @Apmas > — 1.
The first condition implies that & > 0, while the second requires that @ < 2/Amax- In other
words, the method converges for any scalar o that satisfies

2

)“ max

i f o that
The next question is, What is the best value opt for the parameter &, 1.8., the value 0
minimizes p(Gg)? The spectral radius of Gy 18

D<o <

p(Go) = max{il — ethminl, 11— O hmax |-

4. As the curve shows, the best possible « is

i i i icted in Figure 4
This function of & b oee the curv Amaxté| With positive slope crosses the curve

reached at the point where the curve 1~
11 — Apminct] with negative slope, 1.¢., when

—1 4+ hpax® = 1 = Apin®¥-

This gives ) .
Gopt = Amin + A-max. .

Replacing this in one of the two curves gives the corresponding optimal spectral radius

A-max - A-min
o

popr - }‘max + }\min )
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[T = Apare!
b |1 - A-mina]

) 1
opt Aomin

Amax

Figure 4.4. The curve p{G,) as a function of o.

This expression shows the difficulty with the presence of small and large eigenvalues. The
convergence rate can be extremely small for realistic problems. In addition, to achieve
good convergence, eigenvalue estimates are required in order to obtain the optimal or a
near-optimal &, which may cause difficulties. Finally, since An,, can be very large, the
curve p((G,) can be extremely sensitive near the optimal value of @. These observations
are common to many iterative methods that depend on an acceleration parameter.

4.2.2 Regular Splittings

Definition 4.3. Let A, M, N be three given matrices satisfying A= M — N. The pair

of matrices M, N is a regular splitting of A if M is nonsingular and M~ and N are
nonnegative.

With a regular splitting, we associate the iteration
Xpp1 = M 'Nx + M7 1b, (4.34) -

The question is, Under which conditions does such an iteration converge? The following
result, which generalizes Thecrem 1.29, gives the answer.

Theorem 4.4, Let M, N be a regular splitting of a matrix A. Then p(M™IN) < Liff A is
nonsingular and A~" is nonnegative.

Proof. Define G = M~'N. From the fact that o(G) < | and the relation
A=MI-G), (4.35)

it follows that A is nonsingular, The assumptions of Theorem 1.29 are satisfied for the matrix
G since G = M~ N is nonnegative and p(G) < 1. Therefore, (I — G) ' is nonnegative,
asis A = -Gy ' ML

To prove the sufficient condition, assume that 4 is nonsingular and thart its inverse is
nonnegative. Since A and M are nonsingular, the relation (4.35) shows againthat I — G is
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nonsingulat and, in addition,
ATIN = (MU —M'N) N
—(-M'*N'M'N
= (-G (4.36)

assumptions and, as a result of the Perron—

Clearly, G = M™'N is nonnegative by the d with p(G) that is an

Frobenius theorem, there is a nonnegative eigenvector X associate
i h that
eigenvalue suc Gx = (G
From this and by virtue of (4.36), it follows that
p(G)
—_X.
1 - p(G)
Since x and A~\N are nonnegative, this shows that
p(G) >
1—p(G)
which can be true only when 0 < p(G) < 1. Since I —
which implies that p(GY < L.

This theorem establishes that the iteration (4.
splitting and A is an M -matrix.

A7 'Nx =

1

G is nonsingular, then p(G) # 1,
O

34) always converges it M, N is aregular

4.2.3 Diagonally Dominant Matrices

We begin with a few standard definitions.

Definition 4.5, A matrix A is
» (weakly) diagonally dominant if

i=n
lajii = Ziﬂijl, =t

i=1

i#]

o strictly diagonatly dominant if
i=n

lajil > Zlaijle j=10m

i=1

i#i

v irreducibly diagonally dominant if A is irreducible and

=h
gl =2 Y lal, J=Lom
i=1

i

with strict inequality for at least one i

4.2. Convergence 17

Often the term diagonally dominant is used instead of weakly diagonally dominant.
Diagonal dominance is related to an important result in numerical linear algebra known
as Gershgorin’s theorem. This theorem allows rongh locations for all the eigenvalues of
A to be determined. In some situations, it is desirable to determine these locations in the
complex plane by directly exploiting some knowledge of the entries of the matrix A. The
stmplest such result is the bound
|A:l < [IAl

for any matrix norm. Gershgorin’s theorem provides a more precise localization result,

Theorem 4.6. (Gershgorin) Any eigenvalue X of a matrix A is located in one of the closed
discs of the complex plane centered at a;; and having the radius

i=n
LPi = Z Iaiji.
i=1

i

In other words,
i=n
Vi eo(A), 3i suchthat h—ayl <) layl. (4.37)
j=l
i
Proof. Let x be an eigenvector associated with an eigenvalue A and let m be the index
of the component of largest modulus in x. Scale x so that |£,| = 1 and |&| < Lfori % m.
Since x is an eigenvector, then
n
(A- - amm)gm = - Zamjgj:

i=1
i#m

which gives
H n
= Gl < Y amil1Ef] < D famg] = pn- (4.38)

i=1 i=1
J#m i#Fm

'This completes the proof. O

Since the result also holds for the transpose of A, a version of the theorem can also be
formulated based on column sums instead of row sums.

The n discs defined in the theorem are called Gershgorin discs. The theorem states that
the union of these n discs contains the spectrum of A. It can also be shown that, if there are
m Gershgorin discs whose union S is disjoint from all other discs, then .S contains exactly
m eigenvalues (counted with their multiplicities). For example, when one disc is disjoint
from the others, then it must contain exactly one eigenvalue,

An additional refinement, which has important consequences, concerns the particular
case when A is irreducible.

Theorem 4.7. Let A be an irreducible matrix and assume that an eigenvalue i of A lies
on the boundary of the union of the n Gershgorin discs. Then A lies on the boundary of all
Gershgorin discs.
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in’ i tor associated with
. 1, the proof of Gershgorin’s theorern, let x be an eigenvec Vit
I;r(::f)ifth l?slmr- 1 afld |&| < 1 for i #m. Start from (4.38) in the propt: of Gershgormts
tlieorem xr:hich states that the point A belongs t© the mth disc. ;n ad(%lt::r}, ztpt;icleisthz
, i i ult, it cannot be an interto:
the boundary of the union of all the discs. As a result, : terio
di:c D(x, a;:z). This implies that [ — @pm| = Pm. Therefore, the inequalities 1n (4.38) both

become equalities:

n n
b= Gl = 3 lamglIEf ] = 2 lamst = P (4.39)

Let j be any integer 1 < j <n.Since Ais irreducible, its graphis connec.ted and{)therefore,
there exists a path from node m to node j in the adjacency graph. Let this path be

m,ml,mz,...,mk = j. Q,./‘,/\%

By definition of an edge in the adjacency graph, @m,m, /7 0- Because of the equality in

it i = Therefore, |&x, | must be equal to
30), it is necessary that |§ ;| = 1 for any nonzeto & . .
E)‘;z gl)ﬂéw repeating the aIgurjncnt with m replaced by m; shows that the following equality

holds: . N
= 40
e yd = 3 lam fIEST = D 1 il = P (4.40)

- -
j=1 i
i#my i#m]

The argument can be continued showing each time that
(4.41)

|A' - am,-,m,-t = mes

whichis validfori = 1,..., k. Inthe end, jt will be proved that A belongs to the boundar)él
of the jth disc for an arbitrary i _
An immediate corollary of the Gershgorin theorem and Theorem 4.7 follows.

Corolary 4.8. If a matrix A is strictly diagonally dominant or irreducibly diagonally
dominant, then it is nonsingular

Proof. If a matrix is strictly diagonally dominant, then the union of tl.m. Gershgorm d};cl:s
excludes the origin, so A = 0 cannot be an eigenvalue. Assume now that itis only 1rreduc;c1thy
diagonally dominant. Then, if it is singular, the zero eigenvalue lies on the bm_md.ary o . ;:
union of the Gershgorin discs. In this situation, according to Theorem 4.7, this eigenvalu
should lie on the boundary of all the discs. This would mean that

n

iajii = ZI%I for j=1,....m
i
which contradicts the assumption of irreducible diagonal dominance. 0

The following theorem can now be stated.

Theorem 4.9. If A is a strictly diagonally dominant or an irreducibly diagonally dominant

matrix, then the associated Jacobi and Gauss—Seidel iterations converge for any xo.

4.2. Convergence 119

Proof. We first prove the results for strictly diagonally dominant matrices. Let A be
the dominant eigenvalue of the iteration matrix M; = D™I(E + F) for Jacobi and Mg =
(D ~ E)"'F for Gauss—Seidel. As in the proof of Gershgorin’s theorem, let x be an
eigenvector associated with A, with |§,,] = 1 and |§;| < 1fori # 1. Start from (4.38) in the
proof of Gershgorin’s theorem, which states that, for M,

n

- iam'l |a |
M!SZ . |§j|SZ < 1.
=1

|@rnrn | =1 [8mm|
i Fm
This proves the result for Jacobi’s method.
For the Gauss—Seidel iteration, write the mth row of the equation Fx = A{D — E)x in
the form

Zamjgj = A | Gmmbm Ig-"-'—zamjsj ’
J<m jem
which yields the inequality
|A_| < Jm Iam_r”‘s_rl - Ej<m |amj|
~ |@mm| — Zj>m |amj||€:j| |G| — Z:j>m |amj|

The last term in the above inequality has the form o2 /(d — o), withd, o1, o, all nonnegative
and d — a; ~ o3 > (. Therefore,
g2

M = o+ (d — 03— o1) =

In the case when the matrix is only irreducibly diagonally dominant, the above proofs
only show that p(M~1N) < 1, where M —1N is the iteration matrix for either Jacobi or
Gauss—Seidel. A proof by contradiction will be used to show that in fact po(M 1Ny < 1,
Assume that A is an eigenvalue of M~'N with |A| = 1. Then the matrix M~'N — AT is
singular and, as a result, A’ = N — AM is also singular. Since |A| = 1, it is clear that A" is
also an irreducibly diagonally dominant matrix. This contradicts Corollary 4.8. O

1.

4.2.4 Symmetric Positive Definite Matrices

It is possible to show that, when A is symmetric positive definite (SPD), then SOR will

- converge for any  in the open interval (0, 2) and for any initial guess xo. In fact, the

reverse is also true under certain assumptions,

Theorem 4.10. If A is symmetric with positive diagonal elements and for 0 < » < 2, SOR
converges for any xy iff A is positive definite.

4.2.5 Property A and Consistent Orderings

A number of properties that are related to the graph of a finite difference matrix are now
defined. The first of these properties is called Property A. A matrix has Property A if its
graph is bipartite. This means that the graph is two-colorable in the sense defined in
Chapter 3: its vertices can be partitioned into two sets in such a way that no two vertices in
the same set are connected by an edge. Note that, as usual, the self-connecting edges that
correspond to the diagonal elements are ignored.
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if the vertices of its adjacency graph can be

iti 1. irix has Property A
DO e o s . dge in the graph links a vertex of §1to a

partirioned into two sets S, and Sz so that any e
vertex of 5.

Tn other words, nodes from the first set are connected only to nodes from the second
set and vice versa. This definition is illustrated in Figure 4.5.

Figure 4.5, Graph illustration of Property A.

An alternative definition is that a matrix has Property A if it can be permuted into a
matrix with the following structure:
A’:(Dl 'F), (4.42)
—-E D
s. This structure can be obtained by first labeling all

the upknowns in §; from tto#y, in which n, = |81/, and the rest fromn; + lton. N(;(teth_aﬁ
the Jacobi iteration matrix will have the same structure except t?xat the _D], D blocks wi
be replaced by zero blocks. These Jacobi iteration matrices satisfy an important property

stated in the following proposition.

where D and D, are diagonal matrice

Proposition 4.12. Let B be a matrix with the following structure;

B= ( o Bll), (4.43)

and let L and U be the lower and upper triangular parts of B, respectively. Then the

following properties hold:
1. If w is an eigenvalue of B, then 50 is — (L.
2. The eigénvalues of the matrix

1
= U
B{a) =«L + "
defined for o # O are independent of o

Proof. The first property is shown by

associated with , then (fu) is an eigenvector of B associated with the eigenvalue —u.

simply observing that, if (7} is an eigenvector
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Consider the second property. For any ¢, the matrix B(a) is similar to B;i.e., B(a) =
XBX™!, with X defined by
1 O
X= (O o )

This proves the desired result. ]

A definition that generalizes this important property is consistently ordered matrices. Varga
[292] calls a consistently ordered matrix one for which the eigenvalues of B(e) are indepen-
dent of &, Another definition given by Young [321] considers a specific class of matrices that
generalize this property. We will use this definition here. Unlike Property A, the consistent
ordering property depends on the initial ordering of the unknowns.

Definition 4,13, A matrix is said to be consistently ordered if the vertices of its adjacency
graph can be partitioned into p sets §1, Sa, . .., S, with the property that any two adjacent
vertices i and j in the graph belong to two consecutive partitions S and Sy, withk' =k - 1
ifj<iandb =k+1ij=>I

It is easy to show that consistently ordered matrices satisfy Property A: the first color
is made up of all the partitions §; with odd { and the second of the partitions §; with even i.

Example 4.2. Block tridiagonal matrices of the form

Dy Ty
T21 D2 T23
T= T32 D3
. Tp—lgp
Tp,p-l Dp

whose diagonal blocks D; are diagonal matrices are called T-matrices. Clearly, such ma-
trices are consistently ordered. Note that matrices of the form (4.42) are a particular case
with p = 2.

Consider now a general, consistently ordered matrix. By definition, there is a permu-
tation  of {1, 2, ..., n} that is the union of p disjoint subsets

7 =m|Jm-- (. (4.44)

with the property that, if a;; # 0, j # i, and i belongs to 7;, then j belongs to 7y, depend-
ingon whetheri < jori > j. This permutation 7 can be used to permute A symmetrically.
If P is the permutation matrix associated with the permutation x, then clearly .

A = PTAP

is a T-matrix.

Not every matrix that can be symmetrically permuted into a T-matrix is consistently
ordered. The important property here is that the partition {7;} preserves the order of the
indices i, j of nonzero elements. In terms of the adjacency graph, there is a partition of
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the graph with the property that an oriented edge i, j from i to j always points to a set
with a larger index if j > { and a smaller index otherwise. In particulat, a very important
consequence is that edges corresponding to the lower triangular part will remain so in the
permuted matrix. The same is true for the upper triangular part. Tndeed, if a nonzero
clement in the permuted matrix is @ = Al £ 0withi’ > j', then, by definition
of the permutation, (i') > m(jyori= rE7 @) > j = 7(z~1(j)). Because of the
order preservation, it is necessary that { > j. A similar observation helds for the upper
triangular part. Therefore, this results in the following proposition.

Proposition 4.14. If a matrix A is consistently ordered, then there exists a permutation
matrix P such that PTAP is a T-matrix and :

(PTAP);, = PTAL P, (PTAP)y = PTAyP, (4.45)

in which X represents the { strict) lower part of X, and Xy represents the (strict) upper
part of X.

With the above property it can be shown that for consistently ordered matrices the
eigenvalues of B(a) as defined in Proposition 4.12 are also invariant with respect to .

Proposition4.15. Let B be the Jacobi iteration matrix associated witha consistently ordered

matrix A and let L and U be the lower and upper triangular parts of B, respectively. Then

the eigenvalues of the matrix .

' B(e) = oL + —-U
o

defined for o # 0 do not depend on o.
Proof. First transform B(x) into a T-matrix using the permutation 7 in (4.44) provided
by Proposition 4.14: .
PTB(@)P = aP'LP+—P'UP.

o
From Proposition 4.14, the lower part of PTBP is precisely L' = P7 LP. Similarly, the

upper partis U’ = PTU P, the lower and upper parts of the associated T-matrix. Therefore,

we only need to show that the property is true for a T-matrix.
in this case, for any «, the matrix B(e) is similarto B. This means that B(e) = XBX -1,

with X being given by

b
where the partitioning is associated with the subsets 71, ..., Tp, respectively. a
Note that T-matrices and matrices with the structure (4.42) are two particular cases
of matrices that fulfill the assumptions of the above proposition. There are a number of

well-known properties related to Property A and consistent orderings. For example, it is
possible to show the following:

4.2, Convergence 123

= Property A is invariant under symmetric permutations.

* Amarix has Property A iff there is a i '
; . permutation matrix P h 1 — p—1
is consistently ordered. such that A" = P AP

) thConsistently f)rdered nfatricm.es satisfy an important property that relates the eigenvalues
of the tﬁorrespondmg- SOR iteration matrices to those of the Jacobi iteration matrices. The
main theorem regarding the theory for SOR is a consequence of the following result proved

by Young [321]. Remember that
Msor = (D — @FE) ' (@F + (1 — w)D)
=({ ~wD 'E)" (@D7'F 4+ (1~ w)l).

Theorem 4.16. Let A be a consistently ordered matrix such that a;; #= O fori=1,....n

and let @ # 0. Then, if A is a non. 3 i
. , zero eigenvalue of the SOR iterati 3
scalar u such that / tom mairee Msor ey

| (h + o — D? = ra?y? (4.46)
isan e_zgenw?zlue of the Jacobi iteration matrix B. Conversely, if [ is an eigenvalue of the
Jacobi matrix B and if a scalar ). satisfies (4.46), then X is an eigenvaiue of Msor.

Proof. Denote D™!E by L and D' F by U, so that
Msor = (I — L) (@U + (1 — @)}])
and the Jacobi iteration matrix is merely L + U. Writing that A is an eigenvalue yields
det (Af — (I — wL) U + (1 —@)D)) =0,
which is equivalent to

det (M — wl) — (ch +{(1- w)I).) =0
or
. det{({(hA+o— ) —w(AL+0U)) =10
Since w # 0, this can be rewritten as

tw—1
det —w——‘f— (AL+U)) = (,

wlélmh means t_:hat (h 4w — 1)/w is an eigenvalue of AL 4 U. Since A is consistently
ordered, the eigenvalues of AL + U, which are equal to A/2(AVY2L + A71/2U)), are the

same as those of AV/2(L + U), where L + U is the Jacobi iterati )
follows immediately. e Jacobi iteration matrix. The proof
: (|

This theorem allows us to : .
equal to compute an optimal value for w, which can be shown to be

Wopt = —— ————=.
oGy (4.47)

A typical SOR procedure starts with some w, for example, w = 1, then proceeds with
a qumber of SOR steps w_it,h this @. The convergence rate for the resulting iterates is
?sumated, providing an estimate for p(B) using Theorem 4.16. A better w is then obtained
rom the formula (4.47), and the iteration restarted. Further refinements of the optimal
are calculated and retrofitted in this manner as the algorithm progresses. v ’
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4.3 Alternating Direction Methods

The alternating direction implicit (ADT) method was introduced m the mid-19§08 bly Peace-
man and Rachford [225] specifically for solving equations arising i.’ro.m finite difference
discretizations of elliptic and parabolic PDEs. Consider a PDE of elliptic type

9 duGe, M\, 8 ( M)z ) (4.48)
a;("(x’y)‘_ar)+ay b=y ) =

on a rectangular domain with Dirichlet boundary conditions. The equations are discretized

with centered finite differences using n + 2 points in the x direction and m + 2 points 1n
the y direction. This results in the system of equations

Hu+Vu=h, (4.49)

in which the matrices H and V represent the three-point central difference approximations

to the operators 5 , ) i (b(x y)i)
E;(a(x?y)a an ay 3 ay [

respectively. In what follows, the same notation is used to represent the discretized version

of the unknown function . . _ o
The ADI algorithm consists of iterating by solving (4.49) in the x and y directions

alternatively as follows.

ALGORITHM 4.3. Peaceman-Rachford AD1
1. Fork =0, 1,..., until convergence, Do
2 Solve (H + pid)up L = (o] — Vyup +b
3. Solve (V + ppDutg1 = (oed — H)uk+% +b
4, EndDo

Here pp, k = 1,2, ..., Is a sequence of positive acceleration paramete.rs. .
The specific case where py is chosen to be a constant p deserves pax’uculgr attention.
In this case, we can formulate the above iteration in the usual form of (4.28) with

G = (V +pl) " (H — pDH + pD)™'(V = pD), (4.50)
F= V4 [I—H—-pD(H+pD7']b (4.51)

or, when p > 0, in the form (4.22), with
' i
M=—1—(H+,o1)(V+,oI), = —(H = pI}(V — pl). (4.52)
2p 20

Note that (4.51) can be rewritten in a simpler form; see Exer_cise 5.
The ADI algorithm is often formulated for solving the time-dependent PDE

du @ du ] ( Bu) ' 453
— = — |+ bl Yo (4.53)
8t ox (a(x, » ax) + dy @) By
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on the domain (x, y, ) € @ x [0, T] = (0, 1} x (0, 1} x [0, T]. The initial and boundary
conditions are

w(x,v,0) = xo(x, ¥y} V(x,y) € L2, (4.54)
u(k, v, 1) =g(x,y, 1) ¥(x,¥) € 092, >0, (4.55)

where 3% is the boundary of the unit square £2. The equations are discretized with respect to
the space variables x and y as before, resulting in a system of ordinary differential equations

d |

_d_‘r‘ = Hu + Vu, (4.56)
in which the matrices H and V have been defined earlier. The AD] algorithm advances the
relation (4.56) forward in time alternately in the x and y directions as follows:

1 1

(I - EAI H) uk+% = (I + EAI V) Mg,
1 i

I — EAI v Uil = I+ EAt H uk+%.

The acceleration parameters g of Algorithm 4.3 are replaced by a natural time step.

Assuming that the mesh points are ordered by lines in the x direction, the first step of
Algorithm 4.3 constitutes a set of m independent tridiagonal linear systems of size n each.
However, the second step constitutes a large tridiagonal system whose three diagonals are
offset by —m, 0, and m, respectively. This second system can also be rewritien as a set
of n independent tridiagonal systems of size m each by reordering the grid points by lines,
this time in the y direction. The natural (horizontal) and vertical orderings are illustrated
in Figure 4.6. Whenever moving from one half-step of ADI to the next, we must implicitly
work with the transpose of the matrix representing the solution on the 1 X m grid points,
This data operation may be an expensive task on parallel machines and often it is cited as
one of the drawbacks of alternating direction methods in this case.

Horizontal ordering Vertical ordering

20—=GD) 4 B iz ig % 24
l: D O ——O—B
® O—O—O———@
© O—0Gr—(—@ 1—C1

Figure 4.6. The horizontal and vertical orderings for the un-
knowns in ADI

ADI methods were extensively studied in the 1950s and 1960s for the particular case of
positive definite systems. For such systems, /7 and V have real eigenvalues. The following
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is a summary of the main results in this situation. First, when H and V are SPD, then thtie
stationary iteration (py = 0 > 0 for all k) converges. Ff)r the mode_:l problt.:m, the asympt:?h v
rate of convergence of the stationary ADI iteration using the optimal pis the same asso?at
of SSOR using the optimal w. However, each ADI step is more expensive than one S )
step. One of the more important results in the ADI theory s that the rate of convergence 0

ADI can be increased appreciably by using a cyclic sequence of parameters O. A theory for

selecting the best sequence of p¢’s is well understood in the case when H and V commuie

[38]. For the model problem, the parameters can be selected so that the time complexity is
reduced to O (n? logn); for details see {225].

Exercises

1. Consider an n x n tridiagonal matrix of the form

a -1
~1 a -1
-1« -1 457)
L= -1 o -1 ’ (
-1 o -1
-1 «

where « is a real parameter.
a. Verify that the eigenvalues of 7, are given by

)Lj=oz—2cos(j6), j=L....m

where =

9 - 1
nd1
and that an eigenvector associated with each A is

g; = [sin(j6), sin(2jé), ..., sin(nje)1”.

Under what condition on o does this matrix become positive definite?
b. Now take o = 2. How does this matrix relate to the matrices seen in Chapter 2
for one-dimensional problems? B
() Will the Jacobi iteration converge for this matrix? If so, what will its
convergence factor be?
(i) ‘Will the Gauss—Seidel iteration converge for this matrix? If so, what
will its convergence factor be?
(iii) For which values of @ will the SOR iteration converge?

3. Prove that the iteration matrix G,, of SSOR, as defined by (4.13), can be expressed as
G, = I — 02— w)(D —wF)'D(D - wE)™ A.

Deduce the expression (4.27) for the preconditioning matrix asso;iated with the SSOR
iteration.
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3. Let A be a matrix with a positive diagonal .

a. Obtain an expression equivalent to that of (4.13) for G, but involving the matrices
Se =D 12ED V2 and §p = D™V2FD7I2,

b. Show that
DG D7 = (I — wSF)"' (I — wSg) HwSE + (1 — o) (@SF + (1 — w)]).

¢. Now assume that, in addition to having a positive diagonal, A is symmetric. Prove
that the eigenvalues of the SSOR iteration matrix G,, are real and nonnegative.

4. Let

D, -—-BR
"EZ D2 —F3
A= —E3 D3 ,
. - —Fm
_Em Dm

where the D; blocks are nonsingular matrices that are not necessarily diagonal.
a. What are the block Jacobi and block Gauss-Seidel iteration matrices?
b. Show a result similar to that in Proposition 4.15 for the Jacobi iteration matrix.

c. Show also that, for w = 1, (1) the block Gauss—Seidel and block Jacobi iterations
either both converge or both diverge and (2) when they both converge, then the
block Gauss—Seidel iteration is (asymptotically) twice as fast as the block Jacobi
iteration.

5. According to formula (4.23), the f-vector in iteration {(4.22) should be equal to M ~1p,
where b is the right-hand side and M is given in (4.52). Yet formula (4.51) gives a
different expression for f. Reconcile the two results; i.e., show that the expression
(4.51) can also be rewritten as

f=2p(V+pD Y H+pD) 'b.

6. Show that a matrix has Property A iff there is a permutation matrix P such that A’ =
P LAP is consistently ordered.

7. Consider a matrix A that is consistently ordered. Show that the asymptotic convergence
rate for Gauss—-Seidel is double that of the Jacobi iteration.

0 E O
B=(0 0 F)
H 0 0

a. What are the eigenvalues of B? (Express them in terms of eigenvalues of a certain
matrix that depends on E, F, and H.)

b. Assume that a matrix A has the foom A = D 4 B, where D is a nonsingular
diagonal matrix and B is three cyclic. How can the eigenvalues of the Jacobi

8. A matrix of the form

is called a three-cyclic matrix.
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iteration matrix be related to those of the Gauss—Seidel iteration matrix? H(?w
_Seidel iteration compare with

does the asymptotic convergence rate of the Gauss
that of the Jacobi iteration matrix in this case?

¢. Repeat part (b) for the case when SOR replaces the Gauss—Seidel iteration.

d. Generalize the above results to p-cyclic matrices, i.e., matrices of the form

0 E
¢ E

E, 0

Notes and References

Two good references for the material covered in this chapter are Varga [2923hand You:i
[321]. Although relaxation-type methods were very popplar up tf’ the 1960s, eg 511.1{']6 I(l) ;
mostly used as preconditioners, a topic that will be seen 1n _detaﬂ in Chgpters 9 and 10. 1
of the main difficulties with these methods is finding an optimal relaxation facto‘r ‘::or general
For details on the use of Gershgorin’s theorem

atrices. Theorem 4.7 is due to Ostrowslkd. . i ‘
E eigenvalue problems, see [245]. The original idea of the ADI method is described in [225]

and those results on the optimal parameters for ADI can be found in [38]. A comprehensive
text on this class of techniques can be found in [299].

Most of the existing practical iterative techniques for solving large linear systems of equa-
tions utilize a projection process in one way or another. A projection process represents
a canonical way of extracting an approximation to the solution of a linear system from a
subspace. This chapter describes these techniques in a very generat framework and presents
some theory. The one-dimensional case is covered in detail at the end of the chapter, as
it provides a good preview of the more complex projection processes to be seen in later
chapters.

5.1 Basic Definitions and Algorithms

Consider the linear system
' Ax = b, (5.1)

where A is an # X n real matrix. In this chapter, the same symbol A is often used to denote
the matrix and the linear mapping in R" that it represents. The idea of projection techniqies
is to extract an approximate solution to the above problem from a subspace of R”. Tf K is
this subspace of candidate approximants, also called the search subspace, and if m is its
dimension, then, in general, m constraints must be imposed to be able to extract such an
approximation. A typical way of describing these constraints is to impose m (independent)
orthogonality conditions. Specifically, the residual vector b — Ax is constrained fo be
orthogonal to m linearly independent vectors. This defines another subspace £ of dimension
m, which will be called the subspace of constraints or left subspace for reasons that will
be explained below. This simple framework is common to many different mathematical
methods and is known as the Petrov—Galerkin conditions.

There are two broad classes of projection methods: orthogonal and obligue. In an
orthogonal projection technique, the subspace £ is the same as K. In an oblique projection
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