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1.9 Normal and Hermitian Matrices

This section examines specific properties of normal and Hermitian matrices, including some
optimality properties related to their spectra. The most common normal matrices that arise
in practice are Hermitian and skew Hermitian.

1.9.1 Normal Matrices

By definition, a matrix is said to be normal if it commutes with its transpose conjugate, L.€.,
if it satisfies the relation .
AP A = AAY. (1.29)

An immediate property of normal matrices is stated in the following lemma.

Lemma 1.13, If a normal matrix is triangular, then it is a diagonal matrix.

Proof. Assume, for example, that A is upper triangular and normal. Corppare the first
diagonal element of the left-hand side matrix of (1.29) with the corresponding element of
the matrix on the right-hand side. We obtain that

n

2 2
la* =~ layl,

j=t
which shows that the elements of the first row are zeros except for the diagonal one. The

same argument can now be used for the second row, the third row, and so on to the last row,
to show that a;; = 0 fori # j. -

A consequence of this lemma is the following important result.

Theorem 1.14. A matrix is normal iff it is unitarily similar to a diagonal matrix.

Proof. Tt is straightforward to verify that a matrix that is unitarily similar to a diagonal
matrix is normal. We now prove that any normal matrix A is unitarily similar to 2 diagon_al
matrix. Let A = QR Q¥ be the Schur canonical form of A, where O is unitary and R is
upper triangular. By the normality of A,

QR Q" QRO = QRQ¥ QR7 O
or
ORPRQY = QRRY Q7.
Upon multiplication by Q¥ on the left and Q on the right, this leads to the equality R R =

RRH which means that R is normal and, according to the previous lemma, this is only
possible if R is diagonal. O

Thus, any normal matrix is diagonalizable and admits an orthonormal basis of eigenvectors,

namely, the column vectors of Q. . . _
The following result will be used in a later chapter. The question that is asked is,

Assuming that any eigenvector of a matrix A is also an eigenvector of A¥, is A normal? If
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A has a full set of eigenvectors, then the result is true and easy to prove. Indeed, if V is the
n x n matrix of common eigenvectors, then AV = V Dy and A#V = V Dy, with D; and D,
diagonal. Then AA¥V = VD D; and A AV = VD, D, and, therefore, AA¥ = AHA It
turns out that the result is true in general, i.e., independent of the number of eigenvectors
that A admits.

Lemma 1.15. A matrix A is normal iff each of its eigenvectors is also an eigenvector of
Al

Proof. If A is normal, then its left and right eigenvectors are identical, so the sufficient
condition is trivial. Assume now that a matrix A is such that each of its eigenvectors v;,
i=1,..., kwithk < n,is an eigenvector of A¥, Foreach eigenvector v; of 4, Av; = A;v;,
and since v; is also an eigenvector of A¥, then A¥v; = pv;. Observe that (Av;, v;) =
(v, v;) and, because (A% v;, ;) = (vs, Av)) = i (v;, vp), it follows that g = A;. Next, it
is proved by contradiction that there are no elementary divisors. Assume that the contrary
is true for A;. Then the first principal vector u; associated with A; is defined by

(A—3Du = v
Taking the inner product of the above relation with v;, we obtain
(Auw, v} = A Qug, vi) + (o1, vi)- (1.30)
On the other hand, it is also true that
(Aug, i) = (i, ATwi) = Qg hiwi) = Ay (g, vy). (1.30)

A result of (1.30) and (1.31) is that (v;, v;) = 0, which is a contradiction. Therefore, A has
a full set of eigenvectors. This leads to the situation discussed just before the lemma, from
which it is concluded that A must be normal. ]

Clearly, Hermitian matrices are a particular case of normal matrices. Since a normal
matrix satisfies the relation A = QD @¥, with D diagonal and Q unitary, the eigenvalues
of A are the diagonal entries of D, Therefore, if these entries are real it is clear that A¥ = A,
This is restated in the following corollary.

Corollary 1.16. A normal matrix whose eigenvalues are real is Hermitian,
As will be seen shortly, the converse is also true; i.e., a Hermitian matrix has real

eigenvalues.
An eigenvalue A of any matrix satisfies the relation

A
; - Anw) ’
(e, 1)
where u is an associated eigenvector. Generally, one might consider the complex scalars
(Ax, x)
uix) = -(1.32)

(x,x)
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defined for any nonzero vector in C". These ratios are known as Rayleigh quotients and

are important for both theoretical and practical purposes. The set of all possible Rayleigh

quotients as x Tuns over C" is called the field of values of A. This set is clearly bounded

since each |£(x)| is bounded by the 2-norm of A; i.e., | wi(x)| < | All2 for all x. :
If a matrix is normal, then any vector x in C” can be expressed as

Z 5:'61:"
i=l

where the vectors g; form an orthogonal basis of eigenvectors, and the expression for p(x)

becomes (Ax, 1) e n
X, X =1 "kIsk
= = = Ak 1.33
e T N S N :‘;1’8 . (43
where & n
0<fi=—s> =<1 and ;= 1.
sh=gwgps! W 2P

From a well-known characterization of convex hulls established by Hausdorff (known as
Hausdorff’s convex hull theorem), this means that the set of all possible Rayleigh quotients
as x runs over all of C" is equal to the convex hull of the A;’s. This leads to the following
theorem, which is stated without proof.

Theorem 1.17. The field of values of a normal matrix is equal to the convex hull of its
spectrum.

The next question is whether or not this is also true for nonnormal matrices—the answer
is no: the convex hull of the eigenvalues and the field of values of a nonnormal matrix are
different in general. As a generic example, one can take any nonsymmetric real matrix that
has real eigenvalues only. In this case, the convex hull of the spectrum is a real interval but
its field of values will contain imaginary values. See Exercise 12 for another example. It
has been shown (by a theorem shown by Hausdorff) that the field of values of a matrix is a
convex set. Since the cigenvalues are members of the field of values, their convex hull is
contained in the field of values. This is summarized in the following proposition.

Proposition 1.18. The field of values of an arbitrary matrix Is a convex set that contains the
convex hull of its spectrum. It is equal to the convex hull of the spectrum when the matrix
is normal.

A useful definition based on the field of values is that of the numerical radius. The
numerical radius v(A) of an arbitrary matrix A is the radius of the smallest disk containing
the field of values; i.e.,

v(A) = max_|p(x)].

xeC

It is easy to see that
p(4) = v(4) < A2
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The spectral radius and numerical radius are identical for normal matrices. It can also be
easily shown (see Exercise 21) that v(A) > ||All2/2, which means that

1Al _
T < v(A) < Al (1.34)

The numerical radius is a vector norm; i.e., it satisfies (1.8)—(1.10), but it is not consistent
(see Exercise 22). However, it satisfies the power inequality (see [171, p. 333]):

(45 < v(A)F. (1.35)

1.9.2 Hermitian Matrices

A first result on Hermitian matrices is the following.

Theorem 1.19. The cigenvalues of a Hermitian matrix are real; i.e, c(A) C R.

Proof. Let A be an eigenvalue of A and u an associated eigenvector or 2-norm unity. Then
A= (Au,u) = (u, Au) = (Au, u) = 1,
which is the stated result. | ]

It is not difficult to see that if, in addition, the matrix is real, then the eigenvectors can be
chosen to be real; see Exercise 24. Since a Hermitian matrix is normal, the following is a
consequence of Theorem 1.14.

Theorem 1.20. Any Hermitian matrix is unitarily similar to a real diagonal matrix.

In particular, a Hermitian matrix admits a set of orthonormal eigenvectors that form a
basis of C".

In the proof of Theorem 1.17 we used the fact that the inner products {Au, u) are real.
Generally, it is clear that any Hermitiap matrix is such that (Ax, x) is real for any vector
x & C". Tt turns out that the converse is also true; i.e., it can be shown that if (Az, z) is real
for all vectors z in T", then the matrix A is Hermitian (see Exercise 15).

Eigenvalues of Hermitian matrices can be characterized by optimality properties of the
Rayleigh quotients (1.32). The best known of these is the min-max principle. We now label
all the eigenvalues of A in descending order: '

1-1 Z)‘-ZZEJ‘%

Here, the eigenvalues are not necessarily distinct and they are repeated, each according to
its multiplicity. In the following theorem, known as the min-max theorem, § represents a
generic subspace of C”.

Theorem 1.21. The eigenvalues of a Hermitian matrix A are characterized by the relation

‘o=  min (Ax, x)

. max . 1.36
s, dim (Spen—ba1  xES3#E0 (X, X) (1.36)
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Proof. Let {g;};=1_» be an orthonormal basis of C" consisting of eigenvectors of A
associated with Aq, . .., A, Tespectively. Let S be the subspace spanned by the first k of
these vectors and denote by 1(8) the maximum of (Ax, x)/(x, x) over all nonzero vectors
of a subspace S. Since the dimension of S; is k, a well-known theorem of linear algebra
shows that its intersection with any subspace 5 of dimension n — k + 1 is not reduced to
{0}; i.e., there is a vector x in 5" S;. For this x = Z’;;I £;q;, we have

Ax,x) _ Tighlsl?
@) =1 [&[?

ks

so that (S} = Ap.
Consider, on the other hand, the particular subspace Sy of dimension # — &k + 1 that is

spanned by g, . . . » g». For each vector x in this subspace, we have
R e
(Ax, %) _ Z,-:nk A ISIL < a
(x,x) Zi:k {1

so that (Sg) < Az. In other words, as § runs over all the (n — k + 1)-dimensional sub-
spaces, (£(S) is never less than A, and there is at least one subspace Sy for which 1 (Sp) < Az
This shows the desired result. ]

The above result is often called the Courant—Fisher min-max principle or theorem. As a
particular case, the largest eigenvalue of A satisfies
(Ax, x)

Ay = . 1.37
k. el (1.37)

Actually, there are four different ways of rewriting the above characterization. The
second formulation is
(1.38)

] {Ax, x)
Ap = max min
S, dim (S)=k xe5,x£0 (X, x)
and the two other ones can be obtained from (1.36) and (1.38) by simply relabeling the
eigenvalues increasingly instead of decreasingly. Thus, with our labeling of the eigenvalues
in descending order, (1.38) tells us that the smallest eigenvalue satisfies

(1.39)

with A, replaced by A if the eigenvalues are relabeled increasingly. _
In order for all the eigenvalues of a Hermitian matrix to be positive, it is necessary and
sufficient that
(Ax,x) >0 YxeC", x#0.

Such a matrix is called positive definite. A matrix that satisfies (Ax, x) = 0 for any x is said
to be positive semidefinite. In particular, the matrix A" A is semipositive definite for any
rectangular matrix, since

(AY Ax,x) = (Ax, Ax) = 0 Vax.
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Similarly, AAY is also a Hermitian semipositive definite matrix. The square roots of the
eigenvalues of A" A for a general rectangular matrix A are called the singular values of A
and are denoted by oy. In Section 1.5, we stated without proof that the 2-norm of any matrix
A is equal to the largest singular value oq of A. This is now an obvious fact, because

|Ax||2 (Ax, Ax) (A¥ Ax, x)
HA =max ——3F = = max ~———=— = o,

- max —— =
##0  {x|i3 w20 (x,x) A0 (x,X)

which results from (1.37).

Another characterization of eigenvalues, known as the Courant characterization, is
stated in the next theorem. In contrast with the min-max theorem, this property is recursive
in nature.

Theorem 1.22, The eigenvalue ); and the corresponding eigenvector g; of a Hermitian
matrix are such that

(Aqq, q1) (Ax, x)
| = —== = max
(g1, q1) xECn,x#O {x, x)
and, for k > 1, 4
) Ax,
hp = OG0 max (Ax. %), (1.40)
(qks Qk) x#qule="'=qiEH_1x=0 (xs x)

In other words, the maximum of the Rayleigh quotient over a subspace that is orthogonal
to the first £ — 1 eigenvectors is equal to ), and is achieved for the eigenvector g; associated
with Az. The proof follows easily from the expansion (1.33) of the Rayleigh quotient.

1.10 Nonnegative Matrices, M-Matrices

Nonnegative matrices play a crucial role in the theory of matrices. They are important in
the study of convergence of iterative methods and arise in many applications, including
economics, queuing theory, and chemical engineering.

A nonnegative matrix is simply a matrix whose entries are nonnegative. More generally,
a partial order relation can be defined on the set of matrices,

Definition 1.23. Let A and B be two n X m matrices. Then
A<B

if. by definition, a;; < byj for 1 <i <n, 1 < j < m. If O denotes the n X m zero matrix,
then A is nonnegative if A > O and positive if A > 0. Similar definitions hold in which
“positive” is replaced by “negative.”

The binary relation < imposes only a partial orderon R™™™, since two arbitrary matrices
in R™™™ are not necessarily comparable by this relation. For the remainder of this section,
we assume that only square matrices are involved. The next proposition lists a number of
rather trivial properties regarding the partial order relation just defined.
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Proposition 1.24. The following properties hold:

1. Therelation < for matrices is reflexive (A < A}, antisymmetric (if A < Band B < A,
then A = B), and transitive (if A < Band B < C, then A < C).

2. If A and B are nonnegative, then so is their product AB and their sum A + B.
3. If A is nonnegative, then so is A*,

4. If A < B, then AT < BT,

5. = [1Blloo-

O < A< B, then [|Aly < || B: and similarly || Alle

The proof of these properties is left fo Exercise 26.

A matrix is said to be reducible if there is a permutation matrix P such that PAP”
is block upper triangular. Otherwise, it is irreducible. An important result concerning
nonnegative matrices is the following theorem known as the Perron-Frobenius theorem.

Theorem 1.25. Let A be a real n X n noanegative irreducible matrix. Then b = p(A), the
spectral radius of A, is a simple eigenvalue of A. Moreover, there exists an eigenvector u
with positive elements associated with this eigenvalue.

A relaxed version of this theorem allows the matrix to be reducible but the conclusion is
somewhat weakened in the sense that the elements of the eigenvectors are only guaranteed
to be nonnegative.

Next, a useful property is established.

Proposition 1.26. Let A, B, C be nonnegative matrices, with A < B, Then

AC < BC and CA=<CB.

Proof. Consider the first inequality only, since the proof for the second is identical. The
result that is claimed translates into

n R
E GirCrj = E ey, - 1<1i,j<n,
k=1 k=1

which is clearly true by the assumptions. O

A consequence of the proposition is the following corollary.

Corollary 1.27. Let A and B be two nonnegative matrices, with A < B. Then

A¥<B* Vi =0 (14D

Proof. The proof is by induction. The inequality is clearly true for & = 0. Assume that
(1.41) is true for k. According fo the previous proposition, multiplying (1.41) from the left
by A results in

AM1 < ABF. (1.42)
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Now, it is clear that if B > 0, then also B >0, by Proposition 1.24. We now multiply both
sides of the inequality A < B by B* to the right and obtain

AB* < B (1.43)
The inequalities (1.42) and (1.43) show that A*+*! < B**!, which completes the induction
proof. O

A theorem with important conseguences on the analysis of iterative methods will now
be stated.

Theerem 1.28. Let A and B be two square matrices that satisfy the inequalities
d <A<B, (1.44)

Then
p(A) < p(B). (1.45)

Proof. The proof is based on the following equality stated in Theorem 1.12:
p(X) = lim | XV
k—r 00 .

for any matrix norm. Choosing the 1-norm, for example, we have, from the last property
in Proposition 1.24,
p(A) = lim A" < lim |BYY = o(B),
k—o0 koo
which completes the proof. O

Theorem 1.29. Let B be a nonnegative matrix. Then p(B) < 1 iff I — B is nonsingular
and (I — B)™! is nonnegative. ’

Proof. Define C =1 — B. ¥ it is assumed that p(B) < I, then, by Theorsm 1.11,
C = I — B is nonsingular and

o
Cl'=u-B'=) B. (1.46)
i==()
In addition, since B > 0, all the powers of B as well as their sum in (1.46) are also nonneg-
ative. .
To prove the sufficient condition, assume that C is nonsingular and that its inverse
is nonnegative. By the Perron~Frobenius theorem, there is a nonnegative eigenvector u
associated with p(B), which is an eigenvalue; i.e.,

Bu = p(B)u
or, equivalently, )
Clu=—"u.
1—p(B)
Since u and C~! are nonnegative and 7 — B is nonsingular, this shows that 1 — p(B) > 0,
which is the desired result. : . a



t’ .

28 Chapter 1. Background in Linear Algebra

Definition 1.30. A matrix is said to be an M-matrix if it satisfies the following four proper-
Hes:

l.ay; =0fori=1,....n
2 a.; <0fori #j, i,j=1,...,n
3. A is nonsingular.

4, A7'=0.

In reality, the four conditions in the above definition are somewhat redundant and
equivalent conditions that are more rigorous will be given later. Let A be any matrix that
satisfies properties (1) and (2) in the above definition and let D be the diagonal of A. Since
D >0,

A=D~(D-A)=D{I-(U-D"4).

Now define
B=1I-DA.

Using the previous theorem, I — B = D™'A is nonsingular and (/ — B)™' = A"'D = 0
iff p(B) < 1. It is now easy to see that conditions (3) and (4) of Definition 1.30 can be
replaced with the condition p(B) < 1.
Theorem 1.31. Lef @ matrix A be given such that

Layy>0fori=1,...,n;

2. a4 <0fori#ji,j=1....,n
Then A is an M -matrix iff

3. p(B) <1, where B=1—D7'A.
Proof. From the above argument, an immediate application of Theorem 1.29 shows that

properties (3) and (4) of Definition 1.30 are equivalent to p(B) < 1, where B = I'—Cand
C = D' A. In addition, C is nonsingular iff A is and C~! is nonnegative iff A is. ]

The next theorem shows that condition (1) of Definition 1.30 is implied by its other
three conditions.
Theorem 1.32. Let a matrix A be given such that
La;=<0fori#ji,j=1...,n

2. A is nonsingular;

3. A7l >0
Then
4, agi; >0fori=1,...,n;ie, Ais an M-matrix;

5. p(BY < 1, where B=1— D7'A.
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Proof. Define C = A~!. Writing that (AC);; = 1 yields

n

E apgcy = 1,

k=1
which gives
3
aiicii =1 - Zaikcki-
=
Since ajrcy; < 0 for all k, the right-hand side is not less than 1 and, since ¢; = 0, then

a;; > 0. The second part of the result now follows immediately from an application of
Theorem 1.31. 3]

Finally, this useful result follows.

Theorem 1.33. Let A, B be two matrices that satisfy
1. A<B, |
2. by <= O0foralli # j.

Then, if A is an M-matrix, so is the matrix B.

Proof. Assume that A is an M-matrix and let Dy denote the diagonal of a matrix X. The
matrix Dg is positive because
Dg =Dy > 0.

Constder now the matrix I — Dng. Since A < B, then
Di—A>=Dg—B=0,
which, upon multiplying through by D;l, yields
I-D;'A>D;'(Ds—B)> D3 (Dg—By=1~D3'B > 0.

Since the matrices [ — Dng and [ — DEIA are nonnegative, Theorems 1.28 and 1.31
imply that
p(Il —D3'B) < p(I — D7'A) < 1.

This establishes the result by using Theorem 1.31 once again. ]

1.11 Positive Definite Matrices
A real matrix is said to be positive definite or positive real if
(Au,u) >0 Yue R" u#0. (147

[t must be emphasized that this definition is only useful when formulated entirely for real
variables. Indeed, if # were not restricted to be real, then assuming that (A, 1) is real
for all u complex would imply that A is Hermitian; see Exercise 15. If, in addition to the
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definition stated by (1.48), A is symmetric (real), then A is said to be symmetric positive
definite (SPD). Similarly, if A is Hermitian, then A is said to be Hermitian positive definite
(HPD). Some properties of HPD matrices were seen in Section 1.9, in particular with regard
to their eigenvalues. Now the more general case where A is non-Hermitian and positive
definite is considered.

We begin with the observation that any square matrix (real or complex) can be decom-
posed as

A=H+iS§, (1.48)
in which
H= %(A+AH), (1.49)
1
§ = —(A— A"). (1.50)
2i .

Note that both H and § are Hermitian while the matrix {§ in the decomposition (1.48) is
skew Hermitian. The matrix H in the decomposition is called the Hermitian part of A, while
the matrix i§ is the skew-Hermitian part of A. The above decomposition is the analogue
of the decomposition of a complex number z into z = x + iy:

x = Re(z) = %(Z+Z), y=3m(z) = %(z —Z).

When A is real and u is a real vector, then (Au, #) is real and, as a result, the decom-
position (1.48) immediately gives the equality

(Au, u) = (Hu, u). (1.5

This resulis in the following theorem.

Theorem 1.34. Let A be a real positive definite mairix. Then A is nonsingular. In addition,
there exists a scalar o > 0 such that

(Au, i) > ct||ul3 (1.52)

for any real vector u.

Proof. The first statement is an immediate consequence of the definition of positive
definiteness. Indeed, if A were singular, then there would be a nonzere vector such that
Au = Qand, as aresult, (Au, u) = 0 for this vector, which would contradict (1.47). We now
prove the second part of the theorem. From (1.51) and the fact that A is positive definite,
we conclude that H is HPD, Hence, from (1,39), based on the min-max theorem, we get

(Au, u) . {Hu,u)
= min
wED (U, u) wt0 (U, u)
Taking o = Apin(H) yields the desired inequality (1.52). 0

> Amin(H) > 0,

A simple yet important result that locates the eigenvalues of A in terms of the spectra
of H and § can now be proved.
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Theorem 1.35. Let A be any square (possibly complex) matrix and let H = %(A + Af)
and § = (A — A®). Then any eigenvalue Aj of A is such that

A-miin(fl) = me()‘-j) = A'max(H)s (153)
Amin(§) = Sm(lj) < Ainax (8). (1.54)

Proof. When the decomposition (1.48) is applied to the Rayleigh quotient of the eigenvector
uj associated with A ;, we obtain

Aj = (Auj,u;) = (Huj,up) +i(Suy;, uy), (1.55)
assuming that [|u; ||z = 1. This leads to

me().j) = (Huj,uj),
Sm(k]) = (Suj,uj).

The result follows using properties established in Section 1.9. O

Thus, the eigenvalues of a matrix are contained in a rectangle defined by the eigenvalues
of its Hermitian and non-Hermitian parts. In the particular case where A is real, then i 5 is
skew Hermitian and its eigenvalues form a set that is symmetric with respect to the real axis
in the complex plane. Indeed, in this case, i § is real and its eigenvalues come in conjugate
pairs.

Note that all the arguments herein are based on the field of values and, therefore,
they provide ways to localize the eigenvalues of A from knowledge of the field of values.
However, this approximation can be inaccurate in some cases.

Example 1.3. Consider the matrix

11
4= (104 1)'

The eigenvalues of A are —99 and 101. Those of H are 1 & (10% 4+ 1)/2 and those of i §
are +i (10* — 1)/2.

When a matrix B is SPD, the mapping
xy — (&ys=(Bxy) (1.56)

from C" x C" to T is a proper inner product on C" in the sense defined in Section 1.4,
The associated norm is often referred to as the energy norm or A-norm. Sometimes, it is
possible to find an appropriate HPD matrix B that makes a given matrix A Hermitian, i.e.,
such that

(Ax, v)g = (x, A¥)p VX,

although A is a non-Hermitian matrix with respect to the Euclidean inner product. The
simplest examples are A = B~'C and A = CB, where C is Hermitian and B is HPD.
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1.12 Projection Operators

Projection operators or projectors play an important role in numerical linear algebra, par-
ticularly in iterative methods for solving various matrix problems. This section introduces
these operators from a purely algebraic point of view and gives a few of their important
properties.

1.12.1 Range and Null Space of a Projector
A projector P is any linear mapping from C" to itself that is idempotent, ie., such that
Pi=P.

A few simple properties follow from this definition. First, it P is a projector, then so is
(I — P), and the following relation holds: .

Ker(P) = Ran(f — P). (1.57)

In addition, the two subspaces Ker(P) and Ran({P) intersect only at the element zero.
Indeed, if a vector x belongs to Ran(P), then Px = x by the idempotence property. If it
is also in Ker(P), then Px = 0. Hence, x = Px = 0, which proves the result. Moreover,
every element of C" can be written as x = Px + (J — P)x. Therefore, the space C" can
be decomposed as the direct sum

C" = Ker(P)®Ran(P).

Conversely, every pair of subspaces M and S that forms a direct sum of C" defines a
unique projector such that Ran(P) = M and Ker(P) = §. This associated projector P
maps an element x of C” into the component x;, where x; is the M component in the
unique decomposition x = x; + x» associated with the direct sum.

In fact, this association is unique; that is, an arbitrary projector P can be entlrely
determined by two subspaces: (1) the range M of P and (2) its null space §, which is also
the range of I — P. For any x, the vector Px satisfies the conditions

Px e M,
x—Px e §.

The linear mapping P is said to project x onto M and along or parallel to the subspace S.
If P is of rank m, then the range of I — P is of dimension n — m. Therefore, it is natural to
define S through its orthogonal complement L = §*, which has dimension m. The above
conditions, which define u = Px for any x, become

e M, ' (1.58)
x—ul L, (1.59)
These equations define a projector P onto M and orthogonal to the subspace L. The first
statement, (1.58), establishes the m degrees of freedom, while the second, (1.59), gives

the m constraints that define Px from these degrees of freedom. The general definition of
projectors is illustrated in Figure 1.1.
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Px e M x
x—Px 1L 7

\Px

Figure 1.1. Projection of x onto M and orthogonal to L.

The question now is, Given two arbitrary subspaces M and L, both of dimension m, is it
always possible to define a projector onto M orthogonal to L through the conditions (1.58}
and (1.59)? The following lemma answers this question.

Lemma 1.36. Given two subspaces M and L of the same dimension m, the following two
conditions are mathematically equivalent:

1. No nonzero vector of M is orthogonal fo L.

il. Foranyxin C" there is a unigue vector u that satisfies the conditions (1.58) and
{1.59).

Proof. The first condition states that any vector that is in M and also orthogonal to L must
be the zero vector. It is equivalent to the condition
MnLt={o}.

Since L is of dimension m, L' is of dimension » — m and the above condition is equivalent
to the condition that

C"=Meo L. (1.60)
This in turn is equivalent to the statement that, for any x, there exists a unique pair of vectors
i, w such that

x=utw,

where « belongs to M and w = x — u belongs to L, a statement that is identical to (ii). O
In summary, given two subspaces M and L satisfying the condition M N L+ = {0}, there
is a projector P onto M orthogonal to L that defines the projected vector 1 of any vector x
from (1.58) and (1.59). This projector is such that

Ran{P) = M, Ker(P) =

In particular, the condition Px = 0 translates into x € Ker(P), which means that x € L.
The converse is also true. Hence we have the following useful property:

Px=0 iff x 1 L. (1.61)
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1.12.2 Matrix Representations

Two bases are required to obtain a matrix representation of a general projector: a basis

V ={vi, ..., tiy] for the subspace M = Ran(P) and a second one W = [wy, ..., w,,] for
the subspace L. These two bases are biorthogonal when
(v, wy) = &y;. _ (1.62)

In matrix form this means W¥# V = 7. Since Px belongs to M, let Vy be its representation
in the V basis. The constraint x — Px L L is equivalent to the condition

(x—Vy)w;))=0 forj=1,...,m.
In matrix form, this can be rewritten as
Wi (x —Vy)=0. : (1.63)

If the two bases are biorthogonal, then it follows that y = WH x. Therefore, in this case,
Px = VWHx, which yields the matrix representation of P:

P=VWH, T (1.64)

In case the bases V and W are not biorthogonal, then it is easily seen from the condition

(1.63) that
P=VWEVYIWE, (1.65)

If we assume that no vector of M is orthogonal to L, then it can be shown that the m X m
matrix W#V is nonsingular.

1.12.3 Orthogonal and Oblique Projectors

An important class of projectors is obtained in the case when the subspace L is equaluto M,

i.e., when
Ker(P) = Ran(P)*.

Then the projector P is said to be the orthogonal projector onto M. A projector that is
not orthogonal is obligue. Thus, an orthogonal projector is defined through the following
requirements satisfied for any vector x:

PxeM and (J-P)x 1M (1.66)
or, equivalently,
Pre M and ((I—-Px,y)=0 VyeM.
It is interesting to consider the mapping P¥ defined as the adjoint of P:
(PHx,v) =(x, Py) Yx, Vy. (1.67)

The above condition is illustrated in Figure 1.2.
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x
Px e M
x—Px 1 M
M
L3

Px

Figure 1.2. Orthogonal projection of x onto a subspace M.

First, note that P is also a projector because, for all x and v,
(PY2x, y) = (P¥x, Py) = (x, P2y) = (x, Py) = (P7x, y).
A consequence of the relation (1.67) is

Ker(P¥) = Ran(P)*, (1.68)
Ker(P) = Ran(P™)*. (1.69)

The above relations lead to the following proposition.

Proposition 1.37. A projector is orthogonal iff it is Hermitian.

Proof. By definition, an orthogonal projector is one for which Ker(P) = Ran(P)*.
Therefore, by (1.68), if P is Hermitian, then it is orthogonal. Conversely, if P is orthogonal,
then (1.68) implies Ker(P) = Ker(P#) while (1.69) implies Ran(P) = Ran(P). Since
PH is a projector and since projectors are uniquely determined by their range and null
spaces, this implies that P = P, _ O

Given any unitary n x m matrix V whose columns form an orthonormal basis of M =
Ran(P), we can represent P by the matrix P = V V. This is a particular case of the matrix
representation of projectors (1.64). In addition to being idempotent, the linear mapping
associated with this matrix satisfies the characterization given above; i.e.,

Vvx e M and (I -VVTx e M

It is important to note that this representation of the orthogonal projector P is not unique. In
fact, any orthonormal basis V will give a different representation of P in the above form. As
a consequence, for any two orthogonal bases Vi, Vz of M, we must have Vi VIH =W V2H .
an equality that can also be verified independently; see Exercise 30,
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1.12.4 Properties of Orthogonal Projectors

When P is an orthogonal projector, then the two vectors Px and (J — P)x in the decom-
position x = Px 4+ (I — P)x are orthogonal. The following relation results:

Ixl2 = |1 Pxll3 + (I ~ P)xl3.
A consequence of this is that, for any x,
IPxllz = llx]l2.

Thus, the maximum of | Px||2/||x|lz for all x in C" does not exceed one. In addition, the
value one is reached for any element in Ran(P). Therefore,

iPlla=1

for any orthogonal projector P,

'An orthogonal projector has only two eigenvalues: zero or one. Any vector of the range
of P is an eigenvector associated with the eigenvalue one. Any vector of the null space is
obviously an eigenvector associated with the eigenvalue zero.

Next, an important optimality property of orthogonal projectors is established.

Theorem 1.38. Let P be the orthogonal projector onto a subspace M. Then, for any given
vector x in T, the following is true:

min fix — yllz = [ix — Pxla. (1.70)
yeM

Proof. Let y be any vector of M and consider the square of its distance from x. Since’

x — Px is orthogonal to M, to which Px — y belongs, then
Ix = ¥13 = llx — Px + (Px — I = llx ~ Px[} + [(Px — »)i5.

Therefore, |x — ¥l2 2 |lx — Px||2 for all ¥ in M. Thus, we establish the result by noticing
that the minimum is reached for y = Px. .o

By expressing the conditions that define y* = Px for an orthogonal projector P onto
a sabspace M, it is possible to reformulate the above result in the form of necessary and
sufficient conditions that enable us to determine the best approximation to a given vector x
in the least-squares sense.

Corollary 1.39, Let a subspace M and a vector x in C" be given. Then
min [lx ~ yll2 = |lx — y*|2 (1.71)
yeM

iff the following two conditions are satisfied:
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1.13 Basic Concepts in Linear Systems

Linear systems are among the most important and common problems encountered in scien-
tific computing. From the theoretical point of view, it is well understood when a solution
exists, when it does not, and when there are infinitely many solutions. In addition, explicit
expressions of the solution using determinants exist. However, the numerical viewpoint
is far more complex. Approximations may be available but it may be difficult to estimate
how accurate they are. This clearly will depend on the data at hand, i.e., primarily the
coefficient matrix. This section gives a very brief overview of the existence theory as well
ag the sensitivity of the solutions,

1.13.1 Existence of a Solution

Consider the linear system
Ax =D, (1.72)

Here, x is termed the unknown and b the right-hand side. When solving the linear system
(1.72), we distinguish three sitnations.

Case 1 The matrix A is nonsingular. There is a unique solution given by x = A~15.

Case 2 The matrix A is singular and » € Ran(A). Since b € Ran(A), there is an xp such
that Axg = ». Then xg + v is also a solution for any v in Ker(A). Since Ker(A) is
at least one-dimensional, there are infinitely matry solutions.

Case 3 The matrix A is singular and » ¢ Ran(A). There are no solutions.

Example 1.4. The simplest illustration of the above three cases is with small diagonal

matrices. Let 5 0 .
=9 +=()

Then A is nonsingular and there is a unique x given by
‘= 0.5
={ 5 )
20 1
=3 0) »=()

Then A is singular and, as is easily seen, » € Ran(A). For example, a particular element
xg such that Axy = bis xy = (065)' The null space of A consists of all vectors whose first

component is zero, i.c., all vectors of the form (2) Therefore, there are infinitely many
solutions given by

x(a) = (Oj) Y o

Finally, let A be the same as in the previous case, but define the right-hand side as

- (1)

In this case there are no solutions because the second equation cannot be satisfied.

Now let
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1.13.2 Perturbation Analysis

Consider the linear system (1.72), where A is an n x » nonsingular matrix. Given any
matrix E, the matrix A(e) = A + €E is nonsingular for € small enough, i.e., for € < o,
where & is some small number; see Exercise 37. Assume that we perturb the data in the
above system, i.e., that we perturb the matrix A by ¢ F and the right-hand side & by ce. The
solution x(¢) of the perturbed system satisfies the equation

(A4 eE)x(e) = b+ ce. (1.73)
Letd(e) = x(e) — x. Then
(A+eEY(e)=(b+4+ece)—(A+e€E)x

=¢le — Ex),
8(c) = €(A +€E) (e ~ Ex).

As an immediate result, the function x (¢) is differentiable at ¢ = 0 and its derivative is given

by .
x{(0) = hm ﬁ)- = ANe — Ex). (1.74)

The size of the derivative of x(¢) is an md.lcatlon of the size of the variation that the solution
x(¢) undergoes when the data, i.e., the pair [A, b], are perturbed in the direction [E, e].
In absolute terms, a small variation [eE, ee] will cause the solution to vary by roughly
ex'(0) = eA~'(e — Ex). The relative variation is such that

@ -l _ (ueu
TR T

Using the fact that {|5]] < ||A|l|lx|| in the above equation yields

O =Xl cjapay (*'e” + Eﬂ) +o(e), (175)

IIEII) + ofe).

x| el AL

which relates the relative variation in the solution to the relative sizes of the perturbations.
The quantity
«(A) = Al 1A~

is called the condition number of the linear system (1.72) with respect to the norm || - {.

The condition number is relative to a norm. When using the standard norms { - {|,, p =

1,..., 00, itis customary to label x (A) with the same label as the associated norm. Thus,
Kp(A) = || Al A7

For large matrices, the determinant of a matrix is almost never a good indication of
“near” singularity or degree of sensitivity of the linear system. The reason is that det(A)
is the product of the eigenvalues, which depends very much on a scaling of a matrix,
whereas the condition number of a matrix is scaling invariant. For example, for A = a,
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the determinant is det(A) = ", which can be very small if |o] < 1, whereas «(A) = 1 for
any of the standard norms.

In addition, small eigenvalues do not always give a good indication of poor conditioning.
Indeed, a matrix can have all its eigenvalues equal to one yet be poorly conditioned.

Example 1.5. The simplest example is provided by matrices of the form
An =1 +aeel
for large o. The inverse of A, is
A7l =T —aegel
and for the co-norm we have
Al = 147 oo = 1 + ot}

so that

Koo(An) = (1 + ).
For & large o, this can give a very large condition number, whereas all the elgenvalues of
A, are equal to unity.

When an iterative procedure is used to solve a linear system, we typically face the
problem of choosing a good stopping procedure for the algorithm. Often a residual norm,

Iirf = {16 — A%l
is available for some current approximation ¥ and an estimate of the absolute error ||x — X||

or the relative error ||x — X||/||x|| is desired. The following simple relfation is helpful in this

regard: _
I =5 _opy I
lixll el
It is necessary to have an estimate of the condition number «(A) in order to exploit the

above relation.

Exercises

1. Verify that the Buclidean inner product defined by (1.4) does indeed satisfy the general
definition of inner products on vector spaces.

2. Show that two eigenvectors associated with two distinct eigenvalues are linearly inde-
pendent. In a more general sense, show that a family of eigenvectors associated with
distinct eigenvalues forms a linearly independent family.

3. Show that, if A is any nonzero eigenvalue of the matrix A B, then it is also an eigenvalue
of the matrix BA. Start with the particular case where A and B are square and B is
nonsingular, then consider the more general case where A, B may be singular or even
rectangular (but such that AB and B A are square).
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4.

10.

11.

12.

13.

14.

15.

Let A be an n x »n orthogonal matrix, i.e., such that A® A = D, where D is a diagonal
matrix. Assuming that D is nonsingular, what is the inverse of A? Assuming that
D > 0, how can A be transformed into a unitary matrix (by operations on its rows or
columns)?

Show that the Frobenius norm is consistent. Can this norm be associated with two
vector norms via {1.7)7 What is the Frobenius norm of a diagonal matrix? What is the
p-norm of a diagonal matrix (for any p)?

Find the Jordan canonical form of the matrix

1 2 —4
A:(0_1 2).
¢ 0 2

Repeat the question for the matrix obtained by replacing the element @33 with 1.

Give an alternative proof of Theorem 1.9 on the Schur form by starting from the Jordan
canonical form. [Hint: Write 4 = XJ X! and use the QR decomposition of X.]

Show from the definition of determinants used in Section 1.2 that the characteristic
polynomial is a polynomial of degree » for an n x n matrix.

Show that the characteristic polynomials of two similar matrices are equal.

Show that
lim [|A%Y* = p(4)
k—o0

for any matrix norm. [Hint: Use the Jordan canonical form.]

Let X be a nonsingular matrix and, for any matrix norm | - ||, define ||Allx = || AX].
Show that this is indeed a matrix norm. Is this matrix norm consistent? Show the same

for [ XA| and |Y AX|, where ¥ is also a nonsingular matrix. These norms are not, in .

general, associated with any vector norms; i.c., they can’t be defined by a formula of
the form (1.7). Why? What can you say when ¥ = X~1? Is | X 1 AX|| associated with
a vector norm in this particular case?

Find the field of values of the matrix
+=(0 0)
and verify that it is not equal to the convex hull of its eigenvalues.
Show that, for a skew-Hermitian matrix S,
Re(Sx,x) =0 foranyx € C".

Given an arbitrary matrix S, show that, if (Sx, x) = 0 for all x in C”, then it is true that

(8y,2)+ Sz, ) =0 Vy, z e C" (1.76)
[Hint: Expand (S(y + 2), ¥y + 2).] :

Using the results of the previous two exercises, show that, if (Ax, x) is real for all x in
", then A must be Hermitian. Would this result be true if the assumption were to be
replaced with (Ax, x) is real for all real x? Explain.
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16.

17.
18.

19.

20.

21.

22

23.

25.

26.
27.

Show that, if (Sx, x) = 0 for all complex vectors x, then § is zero. [Hint: Start by doing
Exercise 14. Then, selectingy = ¢;, z = e ; in (1.76) for an arbitrary &, establish that
sgje? = —s;; and conclude that sy = 5, = 0.] Is the result true if (Sx, x) = 0 forall
real vectors x?7

The defmition of a positive definite matrix is that {(Ax, x)} is real and positive for all
real vectors x. Show that this is equivalent to requiring that the Hermitian part of A,
namely, %(A + A¥), be (Hermitian) positive definite.

Let A; = B~!Cand A; = CB, where C is a Hermitian matrix and B is an HPD mattix.
Are A; and A; Hermitian in general? Show that A; and A; are Hermitian (self-adjoint)
with respect to the B inner product,

Let a matrix A be such that A¥ = p(A), where p is a polynomial. Show that A is
normal. Given a diagonal complex matrix D, show that there exists a polynomial of
degree less than n such that D = p(D). Use this to show that a normal matrix satisfies
A = p(A) for a certain polynomial of p of degree less than n. As an application, use
this result to provide an alternative proof of Lemma 1.13.

Show that A is normal iff its Hermitian and skew-Hermitian parts, as defined in Sec-
tion 1.11, commute.

The goal of this exercise is to establish the relation (1.34). Consider the numerical
radius v(A) of an arbitrary matrix A. Show that v(4) < ||Aj;. Show that, for a
normal matrix, v(A) = || A|jz. Consider the decomposition of a matrix into its Hermitian
and skew-Hermitian parts, as shown in (1.48), (1.49), and (1.50). Show that ||A|; <
v(H} + v(5). Now, using this inequality and the definition of the numerical radius,
show that [JAllz < 2v(A).

Show that the numerical radius is a vector norm in the sense that it satisfies the three
properties (1.8)(1.10) of norms. [Hint: For (1.8) solve Exercise 16 first.] Find a
counter-example to show that the numerical radius is not a (consistent) matrix norm,
1.e., that v(A B) can be larger than v(A)v(B).

Let A be a Hermitian matrix and B an HPD matrix defining a B inner product. Show that
A is Hermitian (self-adjoint) with respect to the B inner product iff A and B commute.
What condition must B satisfy for the same condition to hold in the more general case
where A is not Hermitian?

. Let A be a real symmetric matrix and A an eigenvalue of A. Show that, if x is an

eigenvector associated with A, then so is &. As a result, prove that, for any eigenvalue
of a real symmetric matrix, there is an associated eigenvector that is real.

Show that a Hessenberg matrix H suchthath;,; #0,j=1,2,...,n — 1, cannot be
derogatory.

Prove all the properties listed in Proposition 1.24.

Let A be an M-matrix and «, v two nonnegative vectors such that v’A~'u < 1. Show
that A — uv” is an M-matrix. '



42 Chapter 1. Background in Linear Algebra

28. Show that if O < A< B, then 0 < ATA < BTB. Conclude that, under the same
assumption, we have (| All2 < || Bi2.

29. Consider the subspace M of R spanned by the vectors

1 1
= 0 vy = -1
1y 0
1 -1
Write down the matrix representing the orthogonal projector onto M.

What is the null space of P?

What is its range?

Find the vector x in § that is the closest in the 2-norm sense to the vector ¢ =

(1, 1,1, 177,

30. Show that, for two orthonormal bases Vi, Vs of the same subspace M of C”, we have
V1V1 X = Vsz x¥x.

31. What are the eigenvalues of a projector? What about its eigenvectors?

R o o

32. Show that, if two projectors P; and P, commute, then their product P = PP, is a
projector. What are the range and kernel of P?

33. Theorem 1.32 shows that condition (2) in Definition 1.30 is not needed; i.e., it is implied
by (4) (and the other conditions). One is tempted to say that only one of (2) or (4) is
required. Is this true? In other words, does (2) also imply (4)? [Prove or show a
counter-example. ]

34. Consider the matrix A of size n % » and the vector x € R":

i -1 -1 -1 ... ~1 ' 1
0 1 -1 -1 ... -1 1/2
0 0 1 -1 .. ~1 1/4
A= 3 B I
0 0 0 ... 0 1 /2"

a. Compute Ax, [Ax|l2, and {|x 2.
b, Show that ||Al; > /n.
¢. Give a lower bound for x2{A4).

35. What is the inverse of the matrix A of the previous exercise? Give an expression for
k1(A) and k4, (A) based on this.

36. Find a small rank-one perturbation that makes the matrix A in Exercise 34 singular.
Derive a lower bound for the singular values of A.

37. Consider a nonsingular matrix A. Given any matrix E, show that there exists o such
that the matrix A(¢) = A + €E is nonsingular for all ¢ < . What is the largest possible
value for o satisfying the condition? {Hint: Consider the eigenvalues of the generalized
eigenvalue problem Au = AFu.]
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Notes and References

For additional reading on the material presented in this chapter, see Golub and Van Loan
[149], Meyer [209], Demmel [99], Datta [93], Stewart [272], and Varga [292]. Volume 2
(“Eigensystems”) of the series [273] offers up-to-date coverage of algorithms for eigenvalue
problems. The excellent treatise of nonnegative matrices in the book by Varga [292] remains
a good reference on this topic and on iterative methods four decades after its first publication.
State-of-the-art coverage of iterative methods up to the beginning of the 1970s can be found
in the book by Young {321], which covers M-matrices and related topics in great detail.
For a good overview of the linear algebra aspects of matrix theory and a complete proof of
Jordan’s canonical form, Halmos [164] is recommended.



