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xviii Preface to the First Edition

tioners have achieved remarkable progress in the development and use of effective iterative
methods. Unfortunately, fewer elegant results have been discovered since the 1950s and
1960s. The field has moved in other directions. Methods have gained not only in efficiency
but also in robustness and in generality. The traditional techniques, which required rather
complicated procedures to determine optimal acceleration parameters, have yielded to the
parameter-free conjugate gradient class of methods.

The primary aim of this book is to describe some of the best techniques available today,
from both preconditioners and accelerators. One of the secondary aims of the book is to
provide a good mix of theory and practice. It also addresses some of the current research
issues, such as parallel implementations and robust preconditioners. The emphasis is on
Krylov subspace methods, currently the most practical and common group of techniques
used in applications. Although there is a tutorial chapter that covers the discretization of
partial differential equations, the book is not biased toward any specific application area.
Instead, the matrices are assumed to be general sparse and possibly irregularly structured.

The book has been structured in four distinct parts. The first part, Chapters 1 to 4,
presents the basic tools. The second part, Chapters 5 to 8, presents projection methods and
Krylov subspace techniques. The third part, Chapters 9 and 10, discusses precondition-
ing. The fourth part, Chapters 11 to 13, discusses paraliel implementations and parallel

algorithms.
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This chapter gives an overview of the relevant concepts in linear algebra that are useful in
later chapters. It begins with a review of basic matrix theory and introduces the elementary
notation used throughout the book. The convergence analysis of iterative methods requires
a good level of knowledge in mathematical analysis and in linear algebra. Traditionally,
many of the concepts presented specifically for these analyses have been geared toward
matrices arising from the discretization of partial differential equations (PDEs) and basic
relaxation-type methods. These concepts are now becoming less important because of the
trenq toward projection-type methods, which have more robust convergence properties and
require different analysis tools. The material covered in this chapter will be helpful in

gsta;zlishing some theory for the algorithms and defining the notation used throughout the
ook.

1.1 Matrices

For the_ sake of generality, all vector spaces considered in this chapter are complex, unless
otherwise stated. A complex n x m matrix A is an n x m array of complex numbers

g, i=1,...,n, j=1,...,m.

XM

The set of all # x m matrices is a complex vector space denoted by C

' ' . . The main
operations with matrices are the following: '

» Addition: € = A + B, where A, B, and C are matrices of size n x m and
ij=ajj+bjj, i=1,2,...,n, j=1,2,...,m.
« Multiplication by a scalar: C = oA, where

cj=aa;, i=12,...,n, j=12,....m
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« Multiplication by another matrix:
C = AB,

where A € 7™ Be C™7,C e €77, and

m

€j = Z aixbyj-

k=1
Sometimes, a notation with column vectors and row vectors is used. The column vector

a.; is the vector consisting of the jth column of A:

(13} j

[#4) i

dej = .

Anj
Similarly, the notation d;. will denote the ith row of the matrix A:

Aixe = (i1, G2y -+« » Bim)-

For example, the following could be written:

A = (@1, Qs - - - > Guan)
or o
A=
Apx
The franspose of a matrix Ain """ is amatrix C in ™" whose elements are defined
bycj=aji=1....m j=1....n It is denoted by AT. Itis often more relevant to
use the franspose conjugate matrix denoted by A7 and defined by

AR = AT = AT,

in which the bar denotes the (element-wise) complex conjugation.

Matrices are strongly related to linear mappings between vector spaces of finite dimen-
sion. This is because they represent these mappings with respect to two given bases: one
for the initial vector space and the other for the image vector space, or range, of A.

1.2 Square Matrices and Eigenvalues

A matrix is square if it has the same number of columns and rows, ie., if m =n. An
important square matrix is the identity matrix
I =148} j=1..ns

where §;; is the Kronecker symbol. The identity matrix satisfies the equality 41 =IA=A
for every matrix A of size n. The inverse of a matrix, when it exists, is a matrix C such that

CA=AC=1
The inverse of A is denoted by A"

1.2. Square Matrices and Eigenvalues 3

The determinant of a matrix may be defined in several ways. For simplicity, the
following recursive definition is used here. The determinant of a 1 x 1 matrix (a) is defined
as the scalar . Then the determinant of an # X n matrix is given by

det(4) = ) (~1)7"aydet(Ayy),

i=1

where Aj; is an (n — 1) x (» — 1) matrix obtained by deleting the first row and the jth
column of A. A matrix is said to be singular when det(A) = 0 and nonsingular otherwise.
We have the following simple propetties:

» det(AB) = det(A)det(B).

det(AT) = det(A).

det(eA) = adet(A).

det(A) = det(A).
s det(l) = 1.

From the above definition of determinants it can be shown by induction that the function
that maps a given complex value A to the value pa(d) = det(A — Al)is a polynomial of
degree n; see Exercise 8. This is known as the characteristic polynomial of the matrix A,

Definition 1.1. A complex scalar . is called an eigenvalue of the square matrix A if a
nonzero vector u of C" exists such that Au = Au. The vector u is called an eigenvector of
A associated with ). The set of all the eigenvalues of A is called the spectrum of A and is
denoted by o (A).

Ascalar X is an eigenvalue of A ifand only if (iff hereafter) det(A — A1) = pa(3) = 0.
That is true iff A is a root of the characteristic polynomial. In particular, there are at most n
distinct eigenvalues.

It is clear that a matrix is singular iff it admits zero as an eigenvalue. A well-known
result in linear algebra is stated in the following proposition.

Propesition 1.2. A martrix A is nonsingular iff it admits an inverse.
Thus, the determinant of a matrix determines whether or not the matrix admits an

inverse.
The maximum modulus of the eigenvalues is called the spectral radius and is denoted

by p(A):

= Al
p(A) ;gﬁ)l o

The trace of a matrix is equal to the sum of all its diagonal elements:

tr(A) = Zn:aﬁ. '
i=1
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4 Chapter 1. Background in Linear Algebra 1.4, Vector Inner Products and Norms s
It can be easily shown that the trace of A is also equal to the sum of the eigenvalues of A « Upper bidiagonal matrices: a;; = Ofor j s ior j #i+ 1.
counted with their multiplicities as roots of the characteristic polynomial. » Lower bidiagonal matrices: a; =0for j#iorj#i—1.

Proposition 1.3. If A is an eigenvalue of A, then % is an eigenvalue of A¥. An eigenvector s Tridiagonal matrices: a;; = 0 for any pair £, j such that |j — | > 1. Notation:

v of AH associated with the eigenvalue A is called a left eigenvector of A. _ :' A = tridiag(@; ;1. Gij, Qi i41)-

When a distinction is necessary, an eigenvector of A is often called a right eigenvector. Banded matrices: a;; # 0 only if i —m; < j < i +m,, where m; and m, are two
Therefore, the eigenvalue 2 as well as the right and left eigenvectors u and v satisfy the : nonnegative integers. The number m; + m, + 1 is called the bandwidth of A.

relations Upper Hessenberg matrices: a;; = 0 for any pair i, j such that i > j + 1. Lower

A L
Au=2iu, vV A=Mv Hessenberg matrices can be defined similarly.

or, equivalently, _ _ ' : e A H

» JH A = H AHy = v, ; * Outer product matrices: A = uv", where both u and v are vectors.

» Permutation matrices: the columns of A are a permutation of the columns of the
identity matrix.

1.3 Types of Matrices _ _ . _ . .

_ Block diagonal matrices: generalizes the diagonal matrix by replacing each diagonal

The choice of a method for solving linear systems will often depend on the structure _ef j entry with a matrix. Notation: _

the matrix A. One of the most important properties of matrices is symmetry, because.of its A — il A 4

impact on the eigenstructure of A. Anumber of other classes of matrices also have particular = diag(An, Az, ..., Am)-

eigenstructures, The most important ones are listed below: ‘ Block tridiagonal matrices: generalizes the tridiagonal matrix by replacing each
« Symmetric matrices: AT = A. 5 nonzero entry with a square matrix. Notation:

A = widiag(A; i1, Ay, Aij1)-

o Hermitian matrices: AT = A.

» Skew-symmetric matrices: AT = -A. The above properties emphasize structure, i.e., the positions of the nonzero elements
. s AH A : with respect to the zeros. Also, they assume that there are many zero elements or that
* Skew-Hermitian matrices: =-—4a. _ the matrix is of low rank. This is in contrast with the classifications listed earlier, such as
s Normal matrices: ATA = AAF. : symmetry and normality.
« Nonnegative matrices: a;; =0, i, j=1,...,n (similar definition for nonpositive,
positive, and negative matrices).
 Unitary matrices: %0 = I. 1.4 Vector Inner Products and Norms
Tt is worth noting that a unitary matrix Q is a matrix whose inverse is its transpose conjugate An inner product on a (complex) vector space X is any mapping s from X x X into €,
H . B
QY since 0"o=1 - @t'=0% 1.1 g reX,yeX — sy €C,
A matrix O such that Q7 Q is diagonal is often called orthogonal. ‘ that satisfies the following conditions:
Some matrices have particular structures that are often.convefmt;nt for co.r;llputatlpnal 1. s(x, y) is linear with respect to x; i.c.,
arposes. The following list, though incomplete, gives an idea of these special matrices, =
fvhrisc):h play an important role in numerical analysis and scientific computing applications. : sOuxs + Agxa, ) = s, y) + s (2, y) Vo, 3 € X,V ke C
« Diagonal matrices: a;j = 0 for j # i. Notation: 2. s(x, y) is Hermitian; L.e.,
A = diag(ay, az, - - - » Gun)- s(y.x) =s(x,y) Vx,y € X.
. . . o
« Upper triangular matrices: aj; =0 fori > j. : 3. s(x, y) is positive definite; i.e.,

o Lower triangular matrices: aj; = 0fori < i s(x,x) > 0 Vx # 0.
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Note that (2) implies that s(x, x) is real and, therefore, (3) adds the constraint that s(x, x)
must also be positive for any nonzero x. For any x and y,

§(x,0) = 5(x,0-¥) =0-s(x,y)=0.

Similarly, s(0, y) = O forany y. Hence, (0, ¥) = 5(x, 0) = Oforany x and y. In particular
condition (3) can be rewritten as

s, x)=0 and s(x,x)=0 iff x=0,

as can be readily shown. A useful relation satisfied by any inner product is the so-called
Cauchy-Schwarz inequality

Is(e, MI? < 5(x, %) 5y, ¥)- (12)

The proof of this inequality begins by expanding s(x — Ay, X — Ay) using the properties of
s )
5 ~ Ay, X — Ay) = s(x, x) — As(x, y) — As(y, X} + s, ).

If y = O then the inequality is trivially satisfied. Assume that y # 0 and take A = s(x, y)/
s(y, ¥). Then, from the above equality, s(x — Ay, x — Ay) = { shows that

s, P | lsCe P
5(v,¥) s(y, ¥
lsx, y)I*

s(v, ¥

0 < s(x — Ay, x —Ay) =s(x,x)—2
=s(x,x) —

which yields the result (1.2). o .

Inythe particular case of the vector space X = C", a canonical inner product is the
Euclidean inner product. The Buclidean inner product of two vectors x = (X)i=1,...» and
y = (3i)i=1,..n Of C" is defined by

@y = xid (1.3)
i=1i

which is often rewritten in matrix notation as
(x,3) = y7x. (1.4

It is easy to verify that this mapping does indeed satisfy the three conditions reqf]ired f(.)r
inner products listed above. A fundamental property of the Euclidean inner product in matrix
computations is the simple relation

(Ax,y) = (x, Ay} Vx,yeC". (1.5)

The proof of this is straightforward. The adjoint of A witllz respect to an arbitrary innfer
product is a matrix B such that (Ax, y) = (x, By) for all pairs of v&'ecfzors x and y. Arr%atznx
is self-adjoint, or Hermitian, with respect to this imer product if it is equal to its adjoint.
The following proposition is a consequence of equality (1.5).

1.5. Matrix Norms 7

Proposition 1.4. Unitary matrices preserve the Euclidean inner product; i.e.,

(Qx, Qy) = (x. »)
Jor any unitary matrix Q and any vectors x and y.
Proof. Indeed, (Qx, Qy) = (x, @7 0y) = (x, ). 0

A vector norm on a vector space X is a real-valued function x — ||x || on X that satisfies
the following three conditions:

I x>0 ¥x € X and |x|| =0iffx =0,
2. Jlax| = ||z} YxeX VaeC.
. x+yl = lx+llyf vx.ye X

For the particular case when X = C", we can associate with the inner product (1.3)
the Euclidean norm of a complex vector defined by

Ixl2 = (x, x)'72.

It follows from Proposition 1.4 that a unitary matrix preserves the Euclidean norm metric;
ie.,

1Qxliz = llxfl2 ¥ x.

The linear transformation associated with a unitary matrix @ is therefore an isometry.
The most commonly used vector norms in numerical linear algebra are special cases of

the Holder norms U
Ixlp = (Z %xfl") : | (1.6)

i=1
Note that the limit of [|x}j, when p tends to infinity exists and is equal to the maximum

modulus of the x;’s. This defines a norm denoted by || - ||oo. The cases p =1, p = 2, and
p = oo lead to the most important norms in practice:

lxlly = x| + Lol + -+« + 2,

i/2
Hxllo = [xe + [l + - + 2],
Iolloo = max ixl.

The Cauchy—Schwarz inequality of (1.2) becomes

1Ce, )| < lxlizliyllz.

1.5 Matrix Norms

X

For a general matrix A in C" ™", we define the following special set of norms:

llAxlip

ze”, xz0 [1%llg

lAllpg = (L7)
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The norm [ « || pg 18 induced by the two norms || - ||, and || - {l;. These norms satisfy the
usual properties of norms; i.e.,

[Al =0 VA €T and [Al=0 iff A=0, (1.8)
ladl =lellA]l ¥4 e C7", Yael, (1.9)
{A+B| <Al +|Bil YA B € cr, (1.10)

A norm that satisfies the above three properties is nothing but a vector norm appliefl to the
matrix considered as a vector consisting of the m columns stacked into a vector of size nm..

The most important cases are again those associated with- pa= 1,2,c¢. The case
g = p is of particular interest and the associated norm |} - ]} pg 15 simply denoted by [ - i
and called a p-norm. A fundamental property of a p-norm is that

IABl, = LAIR1 B,

an immediate consequence of the definition (1.7). Matrix norms that satisfy t:he above
property are sometimes called consistent. Often a norm satisfymg the p}.‘.Opel‘tlt:S (1.8
(1.10) that is consistent is called a matrix norm. A result of consistency is that, for any
square matrix A,
1A%, < ARG
lIn particular the matrix A¥ converges to zero if any of its p-norms is jess than 1.
The Frobenius norm of a matrix is defined by
1/2

ALy =D laul’] - (1L1D)

=1 =t

2
This can be viewed as the 2-norm of the column (or row) vector in C" consisting of all
the columns (resp., rows) of A listed from 1 to m (resp., 1 to n). It-can 'be shown that this
norm is also consistent, in spite of the fact that it is not induced by a pair of vec?or TI0rms;
i.e., it is not derived from a formula of the form (1.7); see Exercise 3. However‘, it does not
satisfy some of the other properties of the p-norms. Fgr exallnple, the‘Frobemus norm of
the identity matrix is not equal to one. To avoid these difficulties, we will only use the ter.m
matrix norm for a novm that is induced by two norms, as inthe deﬁnm.on (1.7). Thus, we will
not consider the Frobenius norm to be a proper matrix norm, according to our conventions,
~ even though it is consistent. .

The following equalities satisfied by the matrix norms defined above lead to alternative

definitions that are often easier to work with:

Al = max > lail, (1.12)
HR |

|Alloo = max laij!, (1.13)
i=i,.0n et

1Al = [o(a” )] = [p(aa™]", (1.14)

IAlF = [r(a? 4)]7 = [waa™]". (1.15)

1.6. Subspaces, Range, and Kernel 9

As will be shown later, the eigenvalues of A7 A are nonnegative. Their square roots are
called singular values of A and are denoted by o;,i = 1, ..., m. Thus, the relation (1.14)
states that ]| A|l; is equal to oy, the largest singular value of A.

Example 1.1. From the relation (1.14), it is clear that the spectral radius p(A) is equal to
the 2-norm of a matrix when the matrix is Hermitian. However, it is not a matrix norm in
general. For example, the first property of norms is not satisfied, since, for

01
A= (0 0)’
we have p(A) = 0 while A # 0. Also, the triangle inequality is not satisfied for the pair A
and B = AT, where A is defined above. Indeed,

p{A+ B)=1 while p(A)+ p(B)=0.

1.6 Subspaces, Range, and Kernel |

A subspace of C" is a subset of C" that is also a complex vector space. The set of all linear
combinations of a set of vectors G = {a1, a2, ..., 44} of C" is a vector subspace called the
linear span of G: -

span{G} = span{a;, az, ..., a,}

; g
= [Z € Cn zZ= Zd;a,-, {O!,'},'._:L.__,q e Cq}

i=1

If the @;’s are linearly independent, then each vector of span{(G} admits a unique expression
as a linear combination of the a;’s. The set & is then called a basis of the subspace span{G}.

Given two vector subspaces §; and Sy, their sum § is a subspace defined as the set of
all vectors that are equal to the sum of a vector of §; and a vector of S;. The intersection
of two subspaces is also a subspace. If the intersection of §) and 5, is reduced to {0}, then
the sum of §; and § is called their direct sum and is denoted by § = §; €5 S;. When S is
equal to C", then every vector x of C" can be written in a unique way as the sum of an
element x; of §; and an element x» of $;. The transformation P that maps x into x; is a
linear transformation that is idempotent, i.e., such that P? = P. lItis called a projector onto
S} along 8.

Two important subspaces that are associated with a matrix A of C™" are its range,
defined by

Ran(A) = {Ax | x € C™}, (1.16)
and its kernel or null space
Ker(A) = {x € C" | Ax = 0}.

The range of A is clearly equal to the linear span of its columns. The rank of a matrix
is equal to the dimension of the range of A, i.e., to the number of linearly independent
columns. This column rank is equal to the row rank, the number of linearly independent
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rows of A. A matrix in C™*" is of full rank when its rank is equal to the smallest of m and
. A fundamental result of linear algebra is stated by the following relation:

" = Ran(A) & Ker(A"). (1.17)

The same result applied to the transpose of A yields C" = Ran(AT) @ Ker(A).

A subspace § is said to be invariant under a (square) matrix A whenever AS C §.In
particular, for any eigenvalue A of A the subspace Ker(A ~ AI) is invariant under A. The
subspace Ker(A ~ Al) is called the eigenspace associated with A and consists of all the
eigenvectors of A associated with A, in addition to the zero vector.

1.7 Orthogonal Vectors and Subspaces
A set of vectors G = {ar, @2, ..., &} 18 said to be erthogonal if-
(@i, a;) =0 when i#]j.

Tt is orthonormal if, in addition, every vector of G has a 2-norm equal to unity. A vector
that is orthogonal to all the vectors of a subspace § is said to be orthogonal to this subspace.
The set of all the vectors that are ortho gonal to § is a vector subspace called the orthogonal
complement of S and denoted by §L. The space C" is the direct sum of § and its orthogonal
complement. Thus, any vector x can be written in a unique fashion as the sum of a vector
in § and a vector in $*. The operator that maps x into its component in the subspace S is
the orthogonal projector onto S.

Every subspace admits an orthonormal basis that is obtained by taking any basis and
orthonormalizing it. The orthonormalization can be achieved by an algorithm known as the
Gram-Schmidt process, which we now describe.

Given a set of linearly independent vectors {x, X2, ..., x,}, first normalize the vector
x1, which means divide it by its 2-norm, to obtain the scaled vector g; of norm unity. Then
x; is orthogonalized against the vector g, by subtracting from x; a multiple of ¢; to make
the resulting vector orthogonal to g1; i.e.,

X9 <« x3 — (X2, q1)41.

The resulting vector is again normalized to yield the second vector g». The ith step of the
Gram-Schmidt process consists of orthogonalizing the vector X; against all previous vectors

4j-

ALGORITHM L.1. Gram-Schmidt

Compute ryy = |x1]l2. Ifry; = O Stop, else compute q| = x1/ri
Forj=2,....rDo
Compute ri; = (%, ). fori =1,2,...,j—1

"L j-1
g :=xj— 2:’:1 ¥ijgi

AN ol

rjj = ligll2
Ifr;; = O then Stop, else q; == §/7j;
EndDo

1.7. Orthogonal Vectors and Subspaces 11

Itis easy to prove that the above algorithm will not break down; i.e., all r steps will be
go‘mpleted iff the set of vectors x1, x2, . .., X, is linearly independent. From lines 4 and 5
it is clear that at every step of the algorithm the following relation holds: ’

i

X; = E rijqi-

i=1

If X‘= fxi, x0,.... %1, Q=I[gq1,92,....4,]. and R denotes the r x r upper triangular
matrix wh.ose nonzero elements are the r;;’s definied in the algorithm, then the above relation
can be written as '

X = QR. (1.18)

th SEE is called the QR decomposition of the # x r matrix X. From what was said above.
e ecomposition of a matrix exists whenever the colunin vect i :
independent set of vectors, ' Fror of X form  finearly

The _.above a.lgorithm. is the standard Gram-Schmidt process. There are alternative
formu.lations of .the algorithm that have better numerical properties. The best known of
these is the modified Gram—Schmidt (MGS) algorithm.

ALGORITHM 1.2, MGS

1. Defineryy := |xi1liz. Ifryy = 0 Stop, else gy := x1/rp
2. Forj=2,...,r,Do

3. Define § = x;

4 Fori=1,...,j—1, Do
5 rij =4, qi)

6. g =g —riq

7. EndDo
8

9

0.

Computer;; := |G|z
Ifr;; = 0 then Stop, else q; := G/7;;

10. EndDo

} \.’et anothf:r altenllative for orthogonalizing a sequence of vectors is the Householder
algorithm. This technique uses Householder refleciors, i.e., matrices of the form

P=1-2wuw’, (1.19)

in which w is a vector of 2-norm unity. Geometricail ITHIT

. . A y, the vector Px represents a

image of x with respect to the hyperplane span{w}. i >
To describe the Householder orthogonalization process, the problem can be formulated

as that of finding a QR factorization of a given # x m matrix X. For any vector x, the vector
w for the Householder transformation (1.19) is selected in such a way that '

Px =qwe,

where o is a scalar. Writing (7 — 2ww?)x = ae; yields

2wk w=x — ae. (1.20)
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This shows that the desired w is a multiple of the vector X —oei:

X - oey
w=t————.
lx —eerl2

For (1.20) to be satisfied, we must impose the condition
2x — we)) x = |x — el

which gives 2(x |} — @£1) = Ixii2 — 20§ + o, where & = ¢! x is the first component of
the vector x. Therefore, it is necessary that

a = xfix|2.
In order to avoid the resulting vector w being small, it is custom_ary to take
a = —sign(lixll2,

which yields « 4 sign(E)xlher o

= x +sigaEnlixlzenls
Given an r X m matrix, its first column can be transformed to a multiple of the column
e; by premultiplying it by a Householder matrix P;:

X1 = P1X, X1e1 = (€1,

Assume, inductively, that the matrix X has been transformed in k — 1 successive steps into
the partially upper triangular form

(xll x12 x13 P PR . xlm \
X2 X3 - e Xom
X33 v e [N X3m
= P X =
Xi = P 1 X1 .
Xp+lk "'t - Xk+lm
K X,k st Xnm /

This matrix is upper triangular up to column pumber k — 1. To advance by one step, it rpust
be transformed into one that is upper triangular up to the Eth column, leaving the previous
columns in the same
that has zeros in positions 1 through k
defined as

—1. So the next Houscholder reflector matrix is

P, =1 — 2ww], (1.22)

in which the vector wy is defined as

z (1.23)

Wy = ——
lzll2’

form. To leave the first ¥ — 1 columns unchanged, select a w-vector -

1.7. Orthogonal Vectors and Subspaces 13

where the components of the vector z are given by

0 if i<k,
Zi = B+ax if i=k, (1.24)
Xik if >k,

with ) 12
B = sign(x) x (fok) . (1.25)
i=k

‘We note in passing that the premultiplication of a matrix X by a Householder transform
requires only a rank-one update since

(I -2uwwhH)X =X —wv’, where v=2X"w.

Therefore, the Householder matrices need not, and should not, be explicitly formed. In
addition, the vectors w need not be explicitly scaled.

Assume now that m — 1 Householder transforms have been applied to a certain matrix
X of dimension n x m to reduce it into the upper triangular form

X1 X112 X3 e xlm\
X3 X2z - Xam
X33 <t Xag
X = Py P PLX = R (1.26)
xm,m
0

Recall that our initial goal was to obtain a QR factorization of X. We now wish to recover
the Q- and R-matrices from the Py’s and the above matrix. If we denote by P the product
of the P; on the left side of (1.26), then (1.26) becomes

R
PX:(O)’ (1.27)

in which R is anm x m upper triangular matrix and O is an (0 — m) x m zero block. Since
P is unitary, its inverse is equal to its transpose and, as a result,

R R
X:PT(O) =P1p2...pm1(0)'

If E,, is the matrix of size n x m that consists of the first m columns of the identity matrix,
then the above equality translates into

X =PYE,R.
The matrix @ = P? E,, represents the first sz columns of P7. Since

QTQ = Eg;PPTEm =],
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O and R are the matrices sought. In sunymary,
X = QR,

in which R is the triangular matrix obtained from the Householder reduction of X (see (1.26)

d (1.27)) and
an ( )) er = Ple--- Pm_lej.

ALGORITHM 1.3. Householder Orthogonalization

1. Define X = [x1.+-+» %ml]

2 Fork=1,...,m, Do

3. Ifk > | compute ry = Pr1 P2+~ Py
4 Compute wy using (1.23), (1.24), (1.25)

5 Compute ri, = Fery with P, = I — 2w w,
6. Compute gz = P1P2- - Preg

7. EndDo

Note that line 6 can be omitted since the g;’s are nf)t needed in the exec;m.on oi ttﬁz
next steps. It must be executed only when the matrix Q 1s.11eeded at the compketloln o ¢
algorithm. Also, the operation in line 5 consists only of zeroing the componentsk + 1, ...,

and updating the kth compon
its nonzero components after
the components 1 through k of the vector w, are
saved in those zero locations that would otherwise be unused.

this step can be saved into an upper triangular ma:trix. Since
. are zero, the upper triangular matrix Rcanbe

1.8 Canonical Forms of Matrices

scusses the reduction of square matrices into matrices that have simpler

ThS e Reduction means a transformation that

forms, such as diagonal, bidiagonal, or triangular.
preserves the eigenvalues of a matrix.

Definition 1.5. Two matrices A and B are said to be similar if there is a nonsingular matrix

h that
X suehia A=XBX L.

The mapping B — A is called a similarity transformation.

Itis clear that similarity is an equivalence relation. Similarity trans.formauor%s presei\:;
the eigenvalues of matrices. An eigenvector up of B is transformed into tt}e e1genve<;i
us = Xup of A. In effect, a similarity transformation amounts to representing the matnx

A= - > -
B in a different basis. .
We now introduce some terminology. o )
1. An eigenvalue A of A has algebraic multiplicity pt if it is a root of multiplicity & ©
the characteristic polynomial.

2. If an eigenvalue is of algebraic multiplicity one, it is said to be simple. A nonsimple

eigenvalue is multiple.

ent of ;. In practice, a work vector can be used for 1y, and

1.8. Canonical Forms of Matrices 15

3. The geometric multiplicity v of an eigenvalue A of A is the maximum number of in-
dependent eigenvectors associated with it. In other words, the geometric multiplicity
y is the dimension of the eigenspace Ker(A — A7),

4. A matrix is derogatory if the geometric multiplicity of at least one of its eigenvalues
is larger than one.

5. An eigenvalue is semisimple if its algebraic multiplicity is equal to its geometric
multiplicity. An eigenvalue that is not semisimple is called defective.

Often, A1, Az, .... A, (p < n) are used to denote the distinct eigenvalues of A. It is
easy to show that the characteristic polynomials of two similar matrices are identical; see
Exercise 9. Therefore, the eigenvalues of two similar matrices are equal and so are their
algebraic multiplicities. Moreover, if v is an eigenvector of B, then Xv is an eigenvector
of A and, conversely, if y is an eigenvector of A, then X'y is an eigenvector of B. As
a resuit, the number of independent eigenvectors associated with a given eigenvalue is the
same for two similar matrices; i.e., their geometric multiplicity is also the same.

1.8.1 Reduction to the Diagonal Form

The simplest form into which a matrix can be reduced is undoubtedly the diagonal form.
Unfortunately, this reduction is not always possible, A matrix that can be reduced to the
diagonal form is called diagonalizable. The following theorem characterizes such matrices.

Theorem 1.6. A matrix of dimension n is diagonalizable iff it has n linearly independent
eigenvectors.

Proof. A matrix A is diagonalizable iff there exists a nonsingular matrix X and a diagonal
matrix D suchthat A = XDX Lor, equivalently, AX = X D, where D is a diagonal matrix.
This is equivalent to saying that # linearly independent vectors exist—the r column vectors
of X—such that Ax; = d;x;. Each of these column vectors is an eigenvector of A. O

A matrix that is diagonalizable has only semisimple eigenvalues. Conversely, if all the
eigenvalues of a mafrix A are semisimple, then A has n eigenvectors. It can be easily
shown that these eigenvectors are linearly independent; see Exercise 2. As aresult, we have
the following proposition.

Proposition 1.7. A matrix is diagonalizable iff all its eigenvaiues are semisimple.

Since every simple eigenvalue is semisimple, an immediate corollary of the above result
is as follows: When A has » distinct eigenvalues, then it is diagonalizable.

1.8.2 The Jordan Canonical Form

From the theoretical viewpoint, one of the most important canonical forms of matrices is
the well-known Jordan form. A full development of the steps leading to the Jordan form
is beyond the scope of this book. Only the main theorem is stated. Details, including the
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proof, can be found in standard books of linear algebra such as [164]. In‘the fo%lowing, m;
refers,' to the algebraic multiplicity of the individual eigenvalue A; and /; is the index of the

- N A lj
eigenvalue, i.e., the smailest integer for which Ker(A — A;1 yitl = Ker{A — 2 1)".

matrix A can be reduced 10 a block diagonal matrix consisting of p
alue );. Each of these dingonal
sub-blocks, where v; is the
referred to as a Jordan
with the constant A; on

Theorem 1.8. Any ed _
diagonal blocks, each associated with a distinct eigenv

blocks has itself a block diagonal structure consisting of ¥;
geometric multiplicity of the eigenvalue A;. Each of rhe‘sub-blocks,
block, is an upper bidiagonal matrix of size not exceeding I < mj,
the diagonal and the constant one on the superdiagonal,

, p,isknown as the ith Jordan submattix (sometimes

. s al bl k":l,...
The ith diagonal block, i =my+myt-+

“Jordan box”). The Jordan submatrix number i starts in column j;
mi_1 + 1. Thus,

Ji
4y

-1 T T )
X AX=J= 7.

Ip

where each J; is associated with A; and is of size m;, the algebraic multiplicity of A;. It has

itself the following structure:
Ji Mmoo 1
i = , with Ji = kt |
Jiy, A
Each of the blocks Jiz corresponds to a different eigenvector associated with the eigenvalue
;. Its size ; is the index of A;.

1.8.3 The Schur Canonical Form

Here, it will be shown that any matrix is unitarily similar to an upper txiangular matrix. The
only result needed to prove the following theorem is that any vector .havmg na 2-norm can
be completed by n — 1 additional vectors to form an orthonormal basis of C".

Theorem 1.9. For any square matrix A, there exists a unitary matrix O such that
0"AQ =R

is upper triangular.

Proof. The proof is by induction over the dimension n. The result is trivial for n = L.

Assume that it is true for n — 1 and consider any matrix A of size n. The matrix admits
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at least one eigenvector u that is associated with an eigenvalue A. Also assume without
loss of generality that |u||2 = 1. First, complete the set consisting of the vector ¢ into an
orthonormal set; i.e., find an #n x (n — 1) matrix V such that the » x »n matrix U = [u, V]
is unitary. Then AU = [Au, AV] and, hence,

H H
Hapg = ® _(» uPav
U AU—[VH} [z, AV]_(O VHAV)' 1.28)

Now use the induction hypothesis for the (# — 1) x (# ~ 1) matrix B = VZAV: There
exists an (7 — 1) x (n — 1) unitary matrix @ such that Q{"BQI = R, is upper triangular.

Define the » x n matrix
0 _(1 0
TN o

and multiply both members of (1.28) by Q{f from the left and Ql from the right. The
resulting matrix is clearly upper triangular, which shows that the result is true for A, with
@ = Q:U, which is a unitary n % 1 matrix. ]

A simpler proof that uses the Jordan canonical forrn and the QR decomposition is the subject
of Exercise 7. Since the matrix R is triangular and similar to A, its diagonal elements are
equal to the eigenvalues of A ordered in a certain manner. In fact, it is easy to extend the
proof of the theorem to show that this factorization can be obtained with any order of the
eigenvalues. Despite its simplicity, the above theorem has far-reaching consequences, some
of which will be examined in the next section.

It is important to note that, for any k& < n, the subspace spanned by the first k columns
of Q is invariant under A. Indeed, the relation AQ = QR implies that, for 1 < j < k, we

have .
=j

Agj =) rijg.
=1

If welet Or = [g1, 92, ..., qx] and if Ry, is the principal leading submatrix of dimension &
of R, the above relation can be rewritten as

AQy = Op Ry,

which is known as the partial Schur decomposition of A, The simplest case of this decom-
position is when & = 1, in which case ¢y is an eigenvector. The vectors g; are usually called
Schur vectors. Schur vectors are not unique and depend, in particular, on the order chosen
for the eigenvaiues.

A slight variation of the Schur canonical form is the quasi-Schur form, also called the
real Schur form. Here diagonal blocks of size 2 x 2 are allowed in the upper triangular
matrix R. The reason for this is to avoid complex arithmetic when the original matrix is
real. A 2 x 2 block is associated with each complex conjugate pair of eigenvalues of the
matrix.

Example 1.2, Consider the 3 x 3 matrix
1 10 0
A=} -1 3 1
-1 0 1
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The matrix A has the pair of complex conjugate eigenvalues
2.4069 ...+ x3.2110...

and the real cigenvalue 0.1863 ....The standard (complex) Schur form is given by the pair

of matrices
0.3381 — 0.8462i  0.3572—0.107Li 0.1749 :
v = | 03193 —0.0105/ —0.2263— 0.6786i —0.6214
0.1824 +0.1852i —0.2659 — 0.5277i 0.7637
and 2 4069 +3.2110i 4.6073 — 4.7030i —2.3418 — 5.2330:
S= 0 24069 —3.2110i -—2.0251 — 1.2016i
0 0 0.1863
It is possible to avoid complex arithmetic by using the quasi-Schur form, which consists of
the pair of matrices :
—0.9768 0.1236  0.1749
Uv=| -00121 07834 -0.6214
0.2138 0.6091  0.7637
and
1.3129 —7.7033  6.0407
R=| 1.4938 35008 —1.3870 J.
0 0 0.1863

We conclude this section by pointing out that the Schur and the quasi-Schur forms
ence on the ordering

of a given matrix are in no way unique. In addition to the depend

of the eigenvalues, any column of Q can be multiplied by a complex sign ¢ and a new
corresponding R can be found. For the quasi-Schur form, there are infinitely many ways to
select the 2 x 2 blocks, corresponding to applying arbitrary rotations to the columns of O

associated with these blocks.

1.8.4 Application to Powers of Matrices

The analysis of many numerical technigues is based on understanding the behavior of the
of a given matrix A. In this regard, the following theorem plays a

fundamental role in numerical linear algebra, more particularly in the analysis of iterative

successive powers A*

methods.

Theorem 1.10. The sequence AR E=0,1,..., converges 1o zero iff p(A) < L.

Proof. To prove the necessary condition, assume that AF — 0 and consider #; a unit

cigenvector associated with an eigenvalue A; of maximum modulus. We have
Akul = )Lfl‘ul,
which implies, by taking the 2-norms of both sides,
IA¥| = | A*uslly — 0.

This shows that p(4) = [M] < L.
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h

AF=Xx7Fx
To pr k it i i
prove that A* converges (o zero, it is sufficient to show that J* converges to zero. An

glgéortaﬂt observation is that J * preserves its block form. Therefore, it is sufficient to prove
at each of the Jordan blocks converges to zero. Each block is of the form

Ji =M1+ E,
where E; is a nilpotent matrix of index [;; i.e., Ef ' = (. Therefore, fork = ;
11.—1 _ *»

k! o
Je=3" T kip
=2 e B
Using the triangle inequality for any norm and taking k = /; yields
n-1

k! S
7 = ZO mfli;kﬂ I1E{1].
j= :

l << CaC]I()l t] e].e ITES II”HS ﬁnlte Sum Cotlv gCS Q ell’ask — O Ile!el“[’e
H 3 . ?
the X ']i con I'g S .

}llat” onverges to Zero O

An equally important result is stated in the following theorem.

Theorem 1.11. The series
o0
>_4F
converges iff p(A) < 1 it
iff p < 1. Under thi 311 —Ali ; imi
S A Ay A is condition, I — A is nonsingular and the limit of the

Proof. i i :

Indec;fc'l ift"{‘lléz :Lrli'zz Eg:v(e)f the t;heo?ar}c IE13 an immedjate consequence of Theorem 1.10
, ges, then — 0. By the previous theorem, this impli :

p(A) < 1. To show that the converse is also true, use the equality s mpies the

I—A < - AU+ A+ A%+ + A
and exploit the fact that, since p(A) < 1, then / — A is nonsingular and, therefore
-4 -A¥D) =T+ A+ AT +... + A%,

H‘JIS ShOWS that ﬂlé series conver, 1 —Il 1 W1l conver ge tO 1 - A .
I" addltl()]l “ OWS the ec()]]d O €O [}

Another important conse ;
! quence of the Jordan canonical form i
spectral radius of a matrix to its matrix norm. ‘ s et thatelatesthe

Theorem 1.12. For any matrix norm || - i, we have

: Eg1/k _
lim A5 = p(4).

Proof. The proof is a direct applicati .
Exercise 10, pplication of the Jordan canonical form and is the subject of
0



