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These two tables present summary statistics for the Picard (above) and Newton (below) schemes run over a range of mesh discretizations (10, 50, 250, and 500 layers, i.e., z = 20, 4, 0.8, and 0.4 cm, 

respectively) and maximum time step sizes ( t = 1000, 100, 10, and 1 s). The 8 performance indicators are: total volumetric and percentage mass balance error, total number of time steps and average 

step size, the average number of Newton or Picard iterations taken at each time step, the average number of iterations needed to solve the linear algebraic system at each Picard or Newton iteration, 

the number of back-stepping occurrences (failure of Picard or Newton to converge within a preset maximum number of iterations – 15 in these runs – so that the time step is repeated at a smaller step 

size), and the number of linear solver failures (only relevant for the Newton scheme, which generates a nonsymmetric algebraic system, and noteworthy for two non-recoverable failures shown below). 

The test problem considers 1D infiltration into a soil characterized by the hydraulic properties and surface boundary condition shown in the 4 graphs above. The moisture retention curve is 

monotonic with a point of inflection that gives the moisture capacity function its typical shape. This feature is exploited in the scheme proposed by Casulli and Zanolli (2010), whereby the Newton 

scheme is split between the increasing and decreasing regions of the moisture capacity curve. The Dirichlet boundary condition leads to significant ponding between 100000 and 200000 s (27.8 and 

55.6 h), and as will be seen in the results, this type of boundary condition, prominent in coupled groundwater/surface water modeling, is a source of significant difficulty in the iterative schemes. 

The initial conditions and pressure head solution profiles at 4 different times are shown in the left graph. The green profile, which falls within the ponding period, shows the excess water that forms 

at the soil surface and the rather sharp moisture front that is generated. In the right graph are plotted the errors at the 4 times shown in the left graph for a wide range of solutions. The rmse errors 

are computed against a reference solution that was generated with a 1000-layer discretization and strict time stepping and convergence criteria. The different solutions represent vertical 

discretizations of 10, 50, 250, and 500 layers ( z = 20, 4, 0.8, and 0.4 cm, respectively), maximum time step sizes of t = 1000, 100, 10, and 1 s, and the Picard, Newton, and nested Newton 

schemes. As expected the errors are highest at the coarsest spatial and temporal discretizations, and the peak errors propagate with the moisture front that is moving downwards into the soil. 

In the graphs on the right the adaptive time stepping behavior of 

the Newton (top graph) and Picard (bottom graph) is shown for 

all vertical discretizations. Most striking here is the very different 

behavior between the Newton and Picard schemes during the 

ponding period. Whereas the Newton scheme is forced to take 

very small step sizes only at the very beginning and end of the 

ponding period, the Picard scheme needs to negotiate a wide 

range of step sizes throughout the ponding period, and indeed 

for the tmax = 1000 s case it never achieves this maximum 

value during ponding, for any of the vertical discretizations. 

Constraining an iteration scheme to take extremely small time 

steps for prolonged periods during a simulation can represent 

an enormous computational burden for subsurface solvers. 

These 3 graphs show the convergence behavior of 

the Newton (top left), Picard (top right), and nested 

Newton (bottom left) schemes in terms of iterations 

required at each time step. The Picard and Newton 

schemes mirror the time stepping behavior 

observed in the box to the left. The nested scheme 

exhibits a behavior similar to Newton, but with a 

smoother transition into and out of the ponding 

period, and without the need for time step 

adaptation – i.e., a fixed step size of 1000 or 100 s 

(solid and dotted lines, respectively) was used for 

each of the 10, 50, 250, and 500 layer runs (blue, 

red, green, and black lines, respectively). Further 

analysis of the nested scheme will be undertaken in 

the coming months. 

As hydrological models become increasingly sophisticated (e.g., coupling with meteorological, ecological, or biogeochemical components) and are applied 

in ever more computationally demanding contexts (e.g., the many realizations that need to be generated in parameter estimation, uncertainty analysis, data 

assimilation, and scenario studies), the need for robust, accurate, and efficient codes is greater than ever. The Richards equation for subsurface flow is 

highly nonlinear and requires iterative schemes for its solution. These schemes have been the subject of much research over the past two decades (e.g., 

Paniconi et al., 1991; Kirkland et al., 1992; Paniconi and Putti, 1994; Putti and Paniconi, 1994; Forsyth et al., 1995; Huang et al., 1996; Lehmann and 

Ackerer, 1998; Miller et al., 1998; Williams et al., 2000; Ross, 2003; Krabbenhøft, 2007; Crevoisier et al., 2009), but an effective all-purpose algorithm has 

thus far proven elusive. Ideally, rapid (quadratic as opposed to linear) and global (insensitive to initial guess) convergence is sought, as well as applicability 

over a range of conditions (dry soils, storm-interstorm simulations, geological heterogeneity, 3D domains with complex boundary conditions, etc). In addition 

to these challenges, the inclusion of surface/groundwater coupling (e.g., Panday and Huyakorn, 2004; Kollet and Maxwell, 2006; Camporese et al., 2010), 

soil/vegetation interactions (Hopmans and Bristow, 2002), data assimilation (e.g., Paniconi et al., 2003; Camporese et al., 2009), and other processes and 

capabilities in advanced models can greatly impact the performance of an iteration scheme. In the case of integrated surface/subsurface flow modeling, for 

instance, convergence needs to be imposed on the coupling term in addition to the subsurface flow solution, atmospheric forcing becomes a dynamic 

process with highly variable rainfall and evaporation rates, and high ponding heads can form at the surface and add significantly to the computational 

burden. In this presentation we illustrate some of these new challenges by examining in detail the performance of the classic Picard and Newton iteration 

methods for a test case of dynamic forcing with high ponding heads imposed at the surface, and we give a preliminary assessment of a new scheme 

(Casulli and Zanolli, 2010) that uses a nested Newton algorithm based on a Jordan decomposition of the soil specific moisture capacity function. 
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The graphs on the left show the mass balance behavior for the Picard and Newton 

schemes. In the leftmost graph the cumulative mass errors are plotted for the Newton 

(solid line) and Picard (dotted line) schemes for the 50, 250, and 500-layer discretizations 

(red, green, and blue curves, respectively) and for all time step sizes, while the rightmost 

graph shows the errors for the 10-layer case, which are about an order of magnitude 

higher. Picard errors are generally a little higher than Newton errors, and the sharp 

increase in (absolute) error during the ponding period can be noted. 


