UNIVERSITA
DEGLI STUDI
DI PADOVA

DICEA

Department of Civil, Environmental and
Architectural Engineering

Introduction to Parallel Computing

Massimiliano Ferronato

UNIVERSITA

DEGLI STUDI Introduction

DI PADOVA

0 Growing availability of parallel computers yields an increase of:

> Problem size

» Computation speed

O Numerical algorithms are strictly related to the computational architecture

O Parallel numerical analysis is a novel research field aiming at the
optimization of the computational performances on parallel computers:

» Gaining as much parallelism as possible from existing
implementations

» Designing new algorithms specifically developed for parallel
computations

UNIVERSITA

DEGLI STUDI Parallel architectures

DI PADOVA

Traditional structure of a single-processor computer (von Neumann
machine)

O Algorithms are built thinking
that the operations are

performed sequentially

O A parallel computer is
equipped with more than
one processor and is able to

CPU

execute several operations

Cache simultaneously

O There are different parallel

architectures according to
RAM Hard Disk how the cuncurrent

operations are performed
and the data are stored

UNIVERSITA

DEGLI STUDI Parallel architectures

DI PADOVA

0 Parameters defining a parallel architecture:

» Type and number of processors

» Level of control on the cuncurrent operations: SIMD (Single
Instruction-Multiple Data) with a host processor and a number of
slave processors; MIMD (Multiple Instruction-Multiple Data) where
each processor is simultaneously host and slave

» Synchronization: barriers and alignment of processors, or
execution of asynchronous algorithms

» Connection among the processors

O The extreme models for a parallel computer are the Shared Memory and
the Distributed Memory architectures

UNIVERSITA

—

2| DEGLI STUDI
DI PADOVA

CPU

CPU

Cache

Cache

Parallel architectures

Shared Memory Computers

CPU

Cache

RAM

O Use of OpenMP directives to manage the access to global memory, the
definition of private variables and the different operations performed by

the processors

 Easy to code and to transform a sequential program into a parallel one

DEGLI STUDI Parallel architectures

DI PADOVA Shared Memory Computers

} UNIVERSITA

O Potential problems:

» Memory conflicts: e.g., two processors access simultaneously the
same variable

» Data consistency: e.g., a processor requires a variables that is
being modified by another processor

L Solutions:

» Variable duplication and definition of private data

» Use of barriers that enforce the alignment of all processors

} UNIVERSITA
o
n

DEGLI STUDI
DI PADOVA

Parallel architectures

Shared Memory Computers

Core

Core

Data
cache

Instr.
cache

Data
cache

Instr.
cache

Shared cache

RAM

a

g

Multi-core processors
are a particular kind of
Shared Memory
Computers

As some resources are
shared among the
cores, e.g., the buses
or part of the cache, a
loss of performance
could be expected

UNIVERSITA
DEGLI STUDI

DI PADOVA

Parallel architectures

Distributed Memory Computers

O While the number of processors that can be linked in a shared memory
architecture and the size of the memory are physically limited, with
distributed memory architectures they are not

CPU

CPU

RAM

RAM

CPU

RAM

O Use of the Message Passing Interface (MPI) paradigm

UNIVERSITA

DEGLI STUDI Parallel architectures

DI PADOVA Distributed Memory Computers

L Most modern supercomputers are hybrid machines, where each CPU
(node) is actually a multi-core processor that locally can be programmed
as a Shared Memory computer

L Writing a code using MPI typically implies a complete revision of the
overall algorithm

0 The main bottleneck of any simulation on a Distributed Memory
architecture is the amount of interprocessor communications

0 Optimal parallel algorithms for Distributed Memory architectures minimize
the number of communications

UNIVERSITA

DEGLI STUDI Computational performance

DI PADOVA

O The ultimate objective of using a parallel computer is to accelerate the
execution of any code

O The quality of the parallelization can be measured in different way and
can provide surprising results

O Speed-up: measure of the computational gain using p processors

Iy

Sp

T, = wall-clock time elapsed using p processors

UNIVERSITA

DEGLI STUDI Computational performance

DI PADOVA

O Efficiency: measure of the fraction of wall-clock time in which a processor
IS really working, i.e., it is not idle

Sp

E,=— mm) E, =T,

p

E, = 1 means ideal speed-up

L Total cost: measure of the total quantity of operations performed by p
processors

Cp =T

C, = constant for any p means ideal speed-up

UNIVERSITA

DEGLI STUDI Computational performance

DI PADOVA

O Effectiveness: measure of the overall quality of a parallel algorithm

F:S—p ‘ F:szEszpSp
PG, Popl, T, T,

F, = max means that the speed-up is as large as possible at a small
total cost

L According to the selected measure and the ultimate objective of the
parallelization, an algorithm can be evaluated in different ways

UNIVERSITA

DEGLI STUDI Computational performance

DI PADOVA An example: the reduction operation

O Numerical example: the reduction operation. Compute in parallel with p
processors

1
2
4 5 20 3.00 0.75 0.15
8

UNIVERSITA

DEGLI STUDI Computational performance

DI PADOVA Time complexity

O An important parameter is the size n of the problem

» Strong scalability: n is constant and p varies

» Weak scalability: n varies in the same ratio as p

O Time complexity: the best performance that can be obtained for a problem
with fixed size n and an arbitrary number of processors

T., = minT,
> p=1 p

There exists an optimal number p* of processors such that the wall-clock
time does not decrease for any p > p*

UNIVERSITA

DEGLI STUDI Computational performance

DI PADOVA Time complexity

For the reduction operation we have:

T, =log, n and p* =n/2
As T,=n-1, the efficiency for p* processors reads:

_2(n—-1)

E. .
nlog, n

p

The efficiency tends to 0 as n grows to infinity, so the reduction of n
scalars is efficient only if using a number of processors much smaller than
n/2

UNIVERSITA

DEGLI STUDI Computational performance

DI PADOVA Time complexity

J Communication penalty: ratio between the real wall-clock time and the
ideal time elapsed if there were no communications

O Large values for the communication penalty mean that the number of
processors is close to p* and the parallelization is no longer efficient

O Amdahl law: if the sequential part of a code is a fraction f of the total
number of operations, then an upper bound for the speed-up exists such
that:

NP S
PEFRa-nNie S f

for any p larger or equal than 1

UNIVERSITA

DEGLI STUDI Parallel algorith ms

DI PADOVA

O The theoretical complexity of a parallel algorithm and the expected
performance can be analyzed using the graph theory

O Agraph:
G =(N,A)
IS a non-empty set made of nodes N and arches A that link a pair of
nodes

O If each pair of nodes linked by an arch has an order, than the graph is
said to be direct

O Two nodes linked by an arch are adjacent or incident

O The degree of a node is the number of arches arriving to or departing
from it

UNIVERSITA

DEGLI STUDI Parallel algorith ms

DI PADOVA

O If a finite number of nodes n,, n,, ..., n, can be reached following the
arches connecting two nodes we say that a path links n, to n,

d If n, =n,, with k > 2, the path is a cycle

O Agraph is said to be connected if for any node i there exists a path that
brings to any other node j

O A parallel algorithm can be theoretically represented by a Direct A-cyclic
Graph (DAG)

O Every node is an operation and every arch denotes the data
dependencies

UNIVERSITA

DEGLI STUDI Parallel algorith ms

DI PADOVA

O Numerical example: compute (a+b)(b+c)=ab+b?+ac+bc

S N N
Lo el o

Q / (a+b)(b+0)

(a+b)(b+c)

Algorithm 1 Algorithm 2

UNIVERSITA

DEGLI STUDI Parallel algorith ms

DI PADOVA Parallel numerical linear algebra

O Numerical linear algebra is one of the fields of scientific computing where
the use of parallel computers is particularly attractive

O For example, let’'s consider an iteration of the Preconditioned Conjugate
Gradient method for solving a Symmetric Positive Definite linear system:

FOR k=0,.. until convergence
t = Ap, Numerical kernels:
a, = r 'p./p,'t
Xpr1 = Xy T 4Py 1. Vector update
ro,, = r, — ot 2. Scalar Product
v o= Mir, 3. Matrix-vector product
B = - vit/p,t 4. Preconditioning
P = V + Bipy
END FOR

UNIVERSITA

—

;5 DEGLI STUDI Parallel algorithms

DI PADOVA Parallel numerical linear algebra

1 Vector update:

¥ei+ap
Is an embarassingly parallel operation

O Blocks of n/p consecutive components are assigned to each processor
O The update operations are independent each other

O Often, a good compiler is already able to exploit the presence of a multi-
core processor

UNIVERSITA

DEGLI STUDI Parallel algorith ms

DI PADOVA Parallel numerical linear algebra

J Scalar product:

n

S = fo’ = inyi

=1
IS a reduction operation

U Blocks of n/p consecutive components are assigned to each processor
Each processor computes its own contribute

L The scalar product is the result of a reduction of all the scalars computed
by each processor

U

d The speed-up is close to be ideal if n >>p

2\ UNIVERSITA
5
(>

DEGLI STUDI Parallel algorith ms

DI PADOVA Parallel numerical linear algebra

J Matrix-vector product:

b = Ax
IS the union of n scalar products

O Stripes of n/p consecutive rows and blocks of n/p consecutive
components are assigned to each processor

O Each processor computes its own scalar products

O A possible limit is that a processor in principle may need to access the
components of any other processor

O Communications are limited in case of linear systems arising from the
Finite Element discretization of PDEs

UNIVERSITA

DEGLI STUDI Parallel algorith ms

DI PADOVA Parallel numerical linear algebra

"¢ X
X X —
X 4 §
X X =
X X o
X|_ X
x| < X ‘:‘).
X[[§ X o
X| (3 X S
x|] ¢ X o
g ™
LO = o
g o
H o
x| | & X
x| 8 X !
X[g X o
X|” = X o
X X .
% X
X X ﬂ
X X o
X X a
X X -

UNIVERSITA

DEGLI STUDI Parallel algorith ms

DI PADOVA Parallel numerical linear algebra

O If the linear system arises
from the FE discretization of
PDESs, each stripe of A refers
to a subdomain of the
computational grid

 The matrix partitioning
coincides with a domain
decomposition where inner
and boundary variables can
be identified

0 The amount of interprocessor communications depends on the number of
edges intercepted by each subdomain boundary

O An optimal domain decomposition can be obtained by appropriate graph
partitioning techniques that minimize the boundaries shared by the
subdomains

UNIVERSITA

DEGLI STUDI Parallel algorith ms

DI PADOVA Parallel numerical linear algebra

1 Preconditioning:

v=M1
where M- is the preconditioner

0 The actual cost of this operation depends on the selected preconditioner

O This operation can be the actual bottleneck for a parallel linear system
solution

0 Sometimes, it is more convenient to use a non-optimal preconditioner,
l.e., having a larger number of iterations to convergence, but highly
parallel (e.g., Jacobi)

O The number of iterations to converge can change even significantly with
the number of processors

UNIVERSITA

DEGLI STUDI Parallel algorith ms

DI PADOVA Parallel numerical linear algebra

O Example of preconditioning: incomplete Cholesky decomposition

O We need to solve a lower and an upper system:

.
LX=b and L'v =%
O If L were dense, a parallel solution is impossible

O However, L is sparse and some parallelism can be gained by level
scheduling

O The efficiency of the parallel implementation is strictly dependent on the
unknown numbering and progressively worsens as the number of
processors grows

UNIVERSITA
DEGLI STUDI
DI PADOVA

O Each level is made of the components
that can be computed independently

O The maximum number of processors is
equal to the maximum number of
components belonging to a single level

Parallel algorithms

Parallel numerical linear algebra

UNIVERSITA

DEGLI STUDI Parallel algorith ms

DI PADOVA Parallel iterative methods

O For a general iterative method in the form:

fk+1 — f(fk)

parallelization can be performed by assigning a block of components to
each processor with communications after each iteration

0 0 0
O O O O

1)))
0. <40 SO

UNIVERSITA

DEGLI STUDI Parallel algorith ms

DI PADOVA Parallel iterative methods

O A barrier with an alignment of all processors is necessary after each
iteration, giving rise to a synchronous method

O The synchronization can be global or local
O For a better parallelization, we can use an asynchronous implementation
O Theoretical properties of the method are completely different

0 Example: the Newton-Raphson iteration
Xier1 = X — fOa) /O
with an asynchronous implementation can become:
Xk+1 = Xk — f(xk)/f,(xj) J<k

O Theoretical properties no longer hold, but the asynchronous method can
be faster

UNIVERSITA
DEGLI STUDI
DI PADOVA

DMMMSA

Department of Civil, Environmental and
Architectural Engineering

End

