
Introduction to Parallel Computing

Massimiliano Ferronato

DICEA
Department of Civil, Environmental and

Architectural Engineering

Introduction

 Growing availability of parallel computers yields an increase of:

 Problem size

 Computation speed

 Numerical algorithms are strictly related to the computational architecture

 Parallel numerical analysis is a novel research field aiming at the

optimization of the computational performances on parallel computers:

 Gaining as much parallelism as possible from existing

implementations

 Designing new algorithms specifically developed for parallel

computations

Parallel architectures

 Traditional structure of a single-processor computer (von Neumann

machine)

 Algorithms are built thinking

that the operations are

performed sequentially

 A parallel computer is

equipped with more than

one processor and is able to

execute several operations

simultaneously

 There are different parallel

architectures according to

how the cuncurrent

operations are performed

and the data are stored

Parallel architectures

 Parameters defining a parallel architecture:

 Type and number of processors

 Level of control on the cuncurrent operations: SIMD (Single

Instruction-Multiple Data) with a host processor and a number of

slave processors; MIMD (Multiple Instruction-Multiple Data) where

each processor is simultaneously host and slave

 Synchronization: barriers and alignment of processors, or

execution of asynchronous algorithms

 Connection among the processors

 The extreme models for a parallel computer are the Shared Memory and

the Distributed Memory architectures

Parallel architectures
Shared Memory Computers

 Use of OpenMP directives to manage the access to global memory, the

definition of private variables and the different operations performed by

the processors

 Easy to code and to transform a sequential program into a parallel one

Parallel architectures
Shared Memory Computers

 Potential problems:

 Memory conflicts: e.g., two processors access simultaneously the

same variable

 Data consistency: e.g., a processor requires a variables that is

being modified by another processor

 Solutions:

 Variable duplication and definition of private data

 Use of barriers that enforce the alignment of all processors

Parallel architectures
Shared Memory Computers

 Multi-core processors

are a particular kind of

Shared Memory

Computers

 As some resources are

shared among the

cores, e.g., the buses

or part of the cache, a

loss of performance

could be expected

Parallel architectures
Distributed Memory Computers

 While the number of processors that can be linked in a shared memory

architecture and the size of the memory are physically limited, with

distributed memory architectures they are not

 Use of the Message Passing Interface (MPI) paradigm

 Most modern supercomputers are hybrid machines, where each CPU

(node) is actually a multi-core processor that locally can be programmed

as a Shared Memory computer

 Writing a code using MPI typically implies a complete revision of the

overall algorithm

 The main bottleneck of any simulation on a Distributed Memory

architecture is the amount of interprocessor communications

 Optimal parallel algorithms for Distributed Memory architectures minimize

the number of communications

Parallel architectures
Distributed Memory Computers

Computational performance

 The ultimate objective of using a parallel computer is to accelerate the

execution of any code

 The quality of the parallelization can be measured in different way and

can provide surprising results

 Speed-up: measure of the computational gain using p processors

𝑆𝑝 =
𝑇1
𝑇𝑝

Tp = wall-clock time elapsed using p processors

Computational performance

 Efficiency: measure of the fraction of wall-clock time in which a processor

is really working, i.e., it is not idle

𝐸𝑝 =
𝑆𝑝
𝑝

Ep = 1 means ideal speed-up

𝐸𝑝 =
𝑇1
𝑝𝑇𝑝

 Total cost: measure of the total quantity of operations performed by p

processors

𝐶𝑝 = 𝑝𝑇𝑝

Cp = constant for any p means ideal speed-up

Computational performance

 Effectiveness: measure of the overall quality of a parallel algorithm

𝐹𝑝 =
𝑆𝑝
𝐶𝑝

𝐹𝑝 =
𝑆𝑝
𝑝𝑇𝑝
=
𝐸𝑝
𝑇𝑝
=
𝐸𝑝𝑆𝑝
𝑇1

Fp = max means that the speed-up is as large as possible at a small

total cost

 According to the selected measure and the ultimate objective of the

parallelization, an algorithm can be evaluated in different ways

Computational performance
An example: the reduction operation

 Numerical example: the reduction operation. Compute in parallel with p

processors

𝑠 =

𝑖=1

16

𝑎𝑖

p Tp Cp Sp Ep Fp

1 15 15 1.00 1.00 0.07

2 8 16 1.88 0.94 0.12

4 5 20 3.00 0.75 0.15

8 4 32 3.75 0.47 0.12

Computational performance
Time complexity

 An important parameter is the size n of the problem

 Strong scalability: n is constant and p varies

 Weak scalability: n varies in the same ratio as p

 Time complexity: the best performance that can be obtained for a problem

with fixed size n and an arbitrary number of processors

𝑇∞ = min
𝑝≥1
𝑇𝑝

There exists an optimal number p* of processors such that the wall-clock

time does not decrease for any p > p*

Computational performance
Time complexity

 For the reduction operation we have:

𝑇∞ = log2 𝑛 and 𝑝∗ = 𝑛 2

 As T1=n-1, the efficiency for p* processors reads:

𝐸𝑝∗ =
2 𝑛 − 1

𝑛 log2 𝑛

 The efficiency tends to 0 as n grows to infinity, so the reduction of n

scalars is efficient only if using a number of processors much smaller than

n/2

Computational performance
Time complexity

 Communication penalty: ratio between the real wall-clock time and the

ideal time elapsed if there were no communications

 Large values for the communication penalty mean that the number of

processors is close to p* and the parallelization is no longer efficient

 Amdahl law: if the sequential part of a code is a fraction f of the total

number of operations, then an upper bound for the speed-up exists such

that:

𝑆𝑝 ≤
1

𝑓 + 1 − 𝑓 𝑝
<
1

𝑓

for any p larger or equal than 1

Parallel algorithms

 The theoretical complexity of a parallel algorithm and the expected

performance can be analyzed using the graph theory

 A graph:

𝐺 = 𝑁, 𝐴

is a non-empty set made of nodes N and arches A that link a pair of

nodes

 If each pair of nodes linked by an arch has an order, than the graph is

said to be direct

 Two nodes linked by an arch are adjacent or incident

 The degree of a node is the number of arches arriving to or departing

from it

Parallel algorithms

 If a finite number of nodes n1, n2, …, nk can be reached following the

arches connecting two nodes we say that a path links n1 to nk

 If n1 = nk, with k > 2, the path is a cycle

 A graph is said to be connected if for any node i there exists a path that

brings to any other node j

 A parallel algorithm can be theoretically represented by a Direct A-cyclic

Graph (DAG)

 Every node is an operation and every arch denotes the data

dependencies

Parallel algorithms

 Numerical example: compute (a+b)(b+c)=ab+b2+ac+bc

Algorithm 1 Algorithm 2

Parallel algorithms
Parallel numerical linear algebra

 Numerical linear algebra is one of the fields of scientific computing where

the use of parallel computers is particularly attractive

 For example, let’s consider an iteration of the Preconditioned Conjugate

Gradient method for solving a Symmetric Positive Definite linear system:

FOR k=0,… until convergence

t = Apk
ak = rk

Tpk/pk
Tt

xk+1 = xk + akpk
rk+1 = rk – akt

v = M-1rk+1
bk = - vTt/pk

Tt

pk+1 = v + bkpk
END FOR

Numerical kernels:

1. Vector update

2. Scalar Product

3. Matrix-vector product

4. Preconditioning

Parallel algorithms
Parallel numerical linear algebra

 Vector update:

 𝑥 ← 𝑥 + 𝛼 𝑝

is an embarassingly parallel operation

 Blocks of n/p consecutive components are assigned to each processor

 The update operations are independent each other

 Often, a good compiler is already able to exploit the presence of a multi-

core processor

Parallel algorithms
Parallel numerical linear algebra

 Scalar product:

𝑠 = 𝑥𝑇 𝑦 =

𝑖=1

𝑛

𝑥𝑖𝑦𝑖

is a reduction operation

 Blocks of n/p consecutive components are assigned to each processor

 Each processor computes its own contribute

 The scalar product is the result of a reduction of all the scalars computed

by each processor

 The speed-up is close to be ideal if n >> p

Parallel algorithms
Parallel numerical linear algebra

 Matrix-vector product:

𝑏 = 𝐴 𝑥

is the union of n scalar products

 Stripes of n/p consecutive rows and blocks of n/p consecutive

components are assigned to each processor

 Each processor computes its own scalar products

 A possible limit is that a processor in principle may need to access the

components of any other processor

 Communications are limited in case of linear systems arising from the

Finite Element discretization of PDEs

Parallel algorithms
Parallel numerical linear algebra

Parallel algorithms
Parallel numerical linear algebra

 If the linear system arises

from the FE discretization of

PDEs, each stripe of A refers

to a subdomain of the

computational grid

 The matrix partitioning

coincides with a domain

decomposition where inner

and boundary variables can

be identified

 The amount of interprocessor communications depends on the number of

edges intercepted by each subdomain boundary

 An optimal domain decomposition can be obtained by appropriate graph

partitioning techniques that minimize the boundaries shared by the

subdomains

Parallel algorithms
Parallel numerical linear algebra

 Preconditioning:

 𝑣 = 𝑀−1 𝑟

where M-1 is the preconditioner

 The actual cost of this operation depends on the selected preconditioner

 This operation can be the actual bottleneck for a parallel linear system

solution

 Sometimes, it is more convenient to use a non-optimal preconditioner,

i.e., having a larger number of iterations to convergence, but highly

parallel (e.g., Jacobi)

 The number of iterations to converge can change even significantly with

the number of processors

Parallel algorithms
Parallel numerical linear algebra

 Example of preconditioning: incomplete Cholesky decomposition

 We need to solve a lower and an upper system:

𝐿 𝑥 = 𝑏 𝐿𝑇 𝑣 = 𝑥and

 If L were dense, a parallel solution is impossible

 However, L is sparse and some parallelism can be gained by level

scheduling

 The efficiency of the parallel implementation is strictly dependent on the

unknown numbering and progressively worsens as the number of

processors grows

Parallel algorithms
Parallel numerical linear algebra

𝑙11 0
𝑙21 𝑙22

0 0
0 0

0 0
0 0

0 𝑙32
0 0

𝑙33 0
𝑙43 𝑙44

0 0
0 0

𝑙51 𝑙52
0 𝑙62

0 0
𝑙63 0

𝑙55 0
𝑙65 𝑙66

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

=

𝑏1
𝑏2
𝑏3
𝑏4
𝑏5
𝑏6

 Each level is made of the components

that can be computed independently

 The maximum number of processors is

equal to the maximum number of

components belonging to a single level

Parallel algorithms
Parallel iterative methods

 For a general iterative method in the form:

 𝑥𝑘+1 = 𝑓 𝑥𝑘

parallelization can be performed by assigning a block of components to

each processor with communications after each iteration

Parallel algorithms
Parallel iterative methods

 A barrier with an alignment of all processors is necessary after each

iteration, giving rise to a synchronous method

 The synchronization can be global or local

 For a better parallelization, we can use an asynchronous implementation

 Theoretical properties of the method are completely different

 Example: the Newton-Raphson iteration

𝑥𝑘+1 = 𝑥𝑘 − 𝑓 𝑥𝑘 𝑓′ 𝑥𝑘

with an asynchronous implementation can become:

𝑥𝑘+1 = 𝑥𝑘 − 𝑓 𝑥𝑘 𝑓′ 𝑥𝑗 𝑗 ≤ 𝑘

 Theoretical properties no longer hold, but the asynchronous method can

be faster

DMMMSA
Department of Civil, Environmental and

Architectural Engineering

End

