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0 Growing availability of parallel computers yields an increase of:

> Problem size

» Computation speed

O Numerical algorithms are strictly related to the computational architecture

O Parallel numerical analysis is a novel research field aiming at the
optimization of the computational performances on parallel computers:

» Gaining as much parallelism as possible from existing
implementations

» Designing new algorithms specifically developed for parallel
computations
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Traditional structure of a single-processor computer (von Neumann
machine)

O Algorithms are built thinking
that the operations are

performed sequentially

O A parallel computer is
equipped with more than
one processor and is able to

CPU

execute several operations

Cache simultaneously

O There are different parallel

architectures according to
RAM Hard Disk how the cuncurrent

operations are performed
and the data are stored
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0 Parameters defining a parallel architecture:

» Type and number of processors

» Level of control on the cuncurrent operations: SIMD (Single
Instruction-Multiple Data) with a host processor and a number of
slave processors; MIMD (Multiple Instruction-Multiple Data) where
each processor is simultaneously host and slave

» Synchronization: barriers and alignment of processors, or
execution of asynchronous algorithms

» Connection among the processors

O The extreme models for a parallel computer are the Shared Memory and
the Distributed Memory architectures
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CPU

CPU

Cache

Cache

Parallel architectures

Shared Memory Computers

CPU

Cache

RAM

O Use of OpenMP directives to manage the access to global memory, the
definition of private variables and the different operations performed by

the processors

 Easy to code and to transform a sequential program into a parallel one
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O Potential problems:

» Memory conflicts: e.g., two processors access simultaneously the
same variable

» Data consistency: e.g., a processor requires a variables that is
being modified by another processor

L Solutions:

» Variable duplication and definition of private data

» Use of barriers that enforce the alignment of all processors
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Parallel architectures

Shared Memory Computers

Core

Core

Data
cache

Instr.
cache

Data
cache

Instr.
cache

Shared cache

RAM

a

g

Multi-core processors
are a particular kind of
Shared Memory
Computers

As some resources are
shared among the
cores, e.g., the buses
or part of the cache, a
loss of performance
could be expected
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Parallel architectures

Distributed Memory Computers

O While the number of processors that can be linked in a shared memory
architecture and the size of the memory are physically limited, with
distributed memory architectures they are not

CPU

CPU

RAM

RAM

CPU

RAM

O Use of the Message Passing Interface (MPI) paradigm
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L Most modern supercomputers are hybrid machines, where each CPU
(node) is actually a multi-core processor that locally can be programmed
as a Shared Memory computer

L Writing a code using MPI typically implies a complete revision of the
overall algorithm

0 The main bottleneck of any simulation on a Distributed Memory
architecture is the amount of interprocessor communications

0 Optimal parallel algorithms for Distributed Memory architectures minimize
the number of communications
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O The ultimate objective of using a parallel computer is to accelerate the
execution of any code

O The quality of the parallelization can be measured in different way and
can provide surprising results

O Speed-up: measure of the computational gain using p processors

Iy

Sp

T, = wall-clock time elapsed using p processors
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O Efficiency: measure of the fraction of wall-clock time in which a processor
IS really working, i.e., it is not idle

Sp

E,=— mm) E, =T,

p

E, = 1 means ideal speed-up

L Total cost: measure of the total quantity of operations performed by p
processors

Cp =T

C, = constant for any p means ideal speed-up
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O Effectiveness: measure of the overall quality of a parallel algorithm

F:S—p ‘ F:szEszpSp
PG, Popl, T, T,

F, = max means that the speed-up is as large as possible at a small
total cost

L According to the selected measure and the ultimate objective of the
parallelization, an algorithm can be evaluated in different ways
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O Numerical example: the reduction operation. Compute in parallel with p
processors

1
2
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O An important parameter is the size n of the problem

» Strong scalability: n is constant and p varies

» Weak scalability: n varies in the same ratio as p

O Time complexity: the best performance that can be obtained for a problem
with fixed size n and an arbitrary number of processors

T., = minT,
> p=1 p

There exists an optimal number p* of processors such that the wall-clock
time does not decrease for any p > p*
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For the reduction operation we have:

T, =log, n and p* =n/2
As T,=n-1, the efficiency for p* processors reads:

_2(n—-1)

E. .
nlog, n

p

The efficiency tends to 0 as n grows to infinity, so the reduction of n
scalars is efficient only if using a number of processors much smaller than
n/2
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J Communication penalty: ratio between the real wall-clock time and the
ideal time elapsed if there were no communications

O Large values for the communication penalty mean that the number of
processors is close to p* and the parallelization is no longer efficient

O Amdahl law: if the sequential part of a code is a fraction f of the total
number of operations, then an upper bound for the speed-up exists such
that:

NP S
PEFRa-nNie S f

for any p larger or equal than 1
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O The theoretical complexity of a parallel algorithm and the expected
performance can be analyzed using the graph theory

O Agraph:
G =(N,A)
IS a non-empty set made of nodes N and arches A that link a pair of
nodes

O If each pair of nodes linked by an arch has an order, than the graph is
said to be direct

O Two nodes linked by an arch are adjacent or incident

O The degree of a node is the number of arches arriving to or departing
from it
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O If a finite number of nodes n,, n,, ..., n, can be reached following the
arches connecting two nodes we say that a path links n, to n,

d If n, =n,, with k > 2, the path is a cycle

O Agraph is said to be connected if for any node i there exists a path that
brings to any other node j

O A parallel algorithm can be theoretically represented by a Direct A-cyclic
Graph (DAG)

O Every node is an operation and every arch denotes the data
dependencies
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O Numerical example: compute (a+b)(b+c)=ab+b?+ac+bc

S N N
Lo el o

Q / (a+b)(b+0)

(a+b)(b+c)

Algorithm 1 Algorithm 2
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O Numerical linear algebra is one of the fields of scientific computing where
the use of parallel computers is particularly attractive

O For example, let’'s consider an iteration of the Preconditioned Conjugate
Gradient method for solving a Symmetric Positive Definite linear system:

FOR k=0,.. until convergence
t = Ap, Numerical kernels:
a, = r 'p./p,'t
Xpr1 = Xy T 4Py 1. Vector update
ro,, = r, — ot 2. Scalar Product
v o= Mir, 3. Matrix-vector product
B = - vit/p,t 4. Preconditioning
P = V + Bipy
END FOR
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1 Vector update:

¥ei+ap
Is an embarassingly parallel operation

O Blocks of n/p consecutive components are assigned to each processor
O The update operations are independent each other

O Often, a good compiler is already able to exploit the presence of a multi-
core processor
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J Scalar product:

n

S = fo’ = inyi

=1
IS a reduction operation

U Blocks of n/p consecutive components are assigned to each processor
Each processor computes its own contribute

L The scalar product is the result of a reduction of all the scalars computed
by each processor

U

d The speed-up is close to be ideal if n >>p
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J Matrix-vector product:

b = Ax
IS the union of n scalar products

O Stripes of n/p consecutive rows and blocks of n/p consecutive
components are assigned to each processor

O Each processor computes its own scalar products

O A possible limit is that a processor in principle may need to access the
components of any other processor

O Communications are limited in case of linear systems arising from the
Finite Element discretization of PDEs
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O If the linear system arises
from the FE discretization of
PDESs, each stripe of A refers
to a subdomain of the
computational grid

 The matrix partitioning
coincides with a domain
decomposition where inner
and boundary variables can
be identified

0 The amount of interprocessor communications depends on the number of
edges intercepted by each subdomain boundary

O An optimal domain decomposition can be obtained by appropriate graph
partitioning techniques that minimize the boundaries shared by the
subdomains
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1 Preconditioning:

v=M1
where M- is the preconditioner

0 The actual cost of this operation depends on the selected preconditioner

O This operation can be the actual bottleneck for a parallel linear system
solution

0 Sometimes, it is more convenient to use a non-optimal preconditioner,
l.e., having a larger number of iterations to convergence, but highly
parallel (e.g., Jacobi)

O The number of iterations to converge can change even significantly with
the number of processors
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O Example of preconditioning: incomplete Cholesky decomposition

O We need to solve a lower and an upper system:

.
LX=b and L'v =%
O If L were dense, a parallel solution is impossible

O However, L is sparse and some parallelism can be gained by level
scheduling

O The efficiency of the parallel implementation is strictly dependent on the
unknown numbering and progressively worsens as the number of
processors grows
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O Each level is made of the components
that can be computed independently

O The maximum number of processors is
equal to the maximum number of
components belonging to a single level

Parallel algorithms

Parallel numerical linear algebra
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O For a general iterative method in the form:

fk+1 — f(fk)

parallelization can be performed by assigning a block of components to
each processor with communications after each iteration

0 0 0
O O O O

1) ) )
0. <40 SO
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O A barrier with an alignment of all processors is necessary after each
iteration, giving rise to a synchronous method

O The synchronization can be global or local
O For a better parallelization, we can use an asynchronous implementation
O Theoretical properties of the method are completely different

0 Example: the Newton-Raphson iteration
Xier1 = X — fOa) /O
with an asynchronous implementation can become:
Xk+1 = Xk — f(xk)/f,(xj) J<k

O Theoretical properties no longer hold, but the asynchronous method can
be faster
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