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Introduction

 Growing availability of parallel computers yields an increase of:

 Problem size

 Computation speed

 Numerical algorithms are strictly related to the computational architecture

 Parallel numerical analysis is a novel research field aiming at the 

optimization of the computational performances on parallel computers:

 Gaining as much parallelism as possible from existing

implementations

 Designing new algorithms specifically developed for parallel

computations



Parallel architectures

 Traditional structure of a single-processor computer (von Neumann

machine)

 Algorithms are built thinking

that the operations are 

performed sequentially

 A parallel computer is

equipped with more than

one processor and is able to 

execute several operations

simultaneously

 There are different parallel

architectures according to 

how the cuncurrent

operations are performed

and the data are stored



Parallel architectures

 Parameters defining a parallel architecture:

 Type and number of processors

 Level of control on the cuncurrent operations: SIMD (Single 

Instruction-Multiple Data) with a host processor and a number of 

slave processors; MIMD (Multiple Instruction-Multiple Data) where

each processor is simultaneously host and slave

 Synchronization: barriers and alignment of processors, or 

execution of asynchronous algorithms

 Connection among the processors

 The extreme models for a parallel computer are the Shared Memory and 

the Distributed Memory architectures



Parallel architectures
Shared Memory Computers

 Use of OpenMP directives to manage the access to global memory, the 

definition of private variables and the different operations performed by 

the processors

 Easy to code and to transform a sequential program into a parallel one



Parallel architectures
Shared Memory Computers

 Potential problems:

 Memory conflicts: e.g., two processors access simultaneously the 

same variable

 Data consistency: e.g., a processor requires a variables that is

being modified by another processor

 Solutions:

 Variable duplication and definition of private data

 Use of barriers that enforce the alignment of all processors



Parallel architectures
Shared Memory Computers

 Multi-core processors 

are a particular kind of 

Shared Memory 

Computers

 As some resources are 

shared among the 

cores, e.g., the buses

or part of the cache, a 

loss of performance 

could be expected



Parallel architectures
Distributed Memory Computers

 While the number of processors that can be linked in a shared memory

architecture and the size of the memory are physically limited, with 

distributed memory architectures they are not

 Use of the Message Passing Interface (MPI) paradigm



 Most modern supercomputers are hybrid machines, where each CPU 

(node) is actually a multi-core processor that locally can be programmed

as a Shared Memory computer

 Writing a code using MPI typically implies a complete revision of the 

overall algorithm

 The main bottleneck of any simulation on a Distributed Memory 

architecture is the amount of interprocessor communications

 Optimal parallel algorithms for Distributed Memory architectures minimize

the number of communications

Parallel architectures
Distributed Memory Computers



Computational performance

 The ultimate objective of using a parallel computer is to accelerate the 

execution of any code

 The quality of the parallelization can be measured in different way and 

can provide surprising results

 Speed-up: measure of the computational gain using p processors

𝑆𝑝 =
𝑇1
𝑇𝑝

Tp = wall-clock time elapsed using p processors



Computational performance

 Efficiency: measure of the fraction of wall-clock time in which a processor 

is really working, i.e., it is not idle

𝐸𝑝 =
𝑆𝑝
𝑝

Ep = 1 means ideal speed-up

𝐸𝑝 =
𝑇1
𝑝𝑇𝑝

 Total cost: measure of the total quantity of operations performed by p

processors

𝐶𝑝 = 𝑝𝑇𝑝

Cp = constant for any p means ideal speed-up



Computational performance

 Effectiveness: measure of the overall quality of a parallel algorithm

𝐹𝑝 =
𝑆𝑝
𝐶𝑝

𝐹𝑝 =
𝑆𝑝
𝑝𝑇𝑝
=
𝐸𝑝
𝑇𝑝
=
𝐸𝑝𝑆𝑝
𝑇1

Fp = max means that the speed-up is as large as possible at a small 

total cost

 According to the selected measure and the ultimate objective of the 

parallelization, an algorithm can be evaluated in different ways 



Computational performance
An example: the reduction operation

 Numerical example: the reduction operation. Compute in parallel with p

processors

𝑠 = 

𝑖=1

16

𝑎𝑖

p Tp Cp Sp Ep Fp

1 15 15 1.00 1.00 0.07

2 8 16 1.88 0.94 0.12

4 5 20 3.00 0.75 0.15

8 4 32 3.75 0.47 0.12



Computational performance
Time complexity

 An important parameter is the size n of the problem

 Strong scalability: n is constant and p varies

 Weak scalability: n varies in the same ratio as p

 Time complexity: the best performance that can be obtained for a problem

with fixed size n and an arbitrary number of processors 

𝑇∞ = min
𝑝≥1
𝑇𝑝

There exists an optimal number p* of processors such that the wall-clock 

time does not decrease for any p > p*



Computational performance
Time complexity

 For the reduction operation we have:

𝑇∞ = log2 𝑛 and 𝑝∗ =  𝑛 2

 As T1=n-1, the efficiency for p* processors reads:

𝐸𝑝∗ =
2 𝑛 − 1

𝑛 log2 𝑛

 The efficiency tends to 0 as n grows to infinity, so the reduction of n

scalars is efficient only if using a number of processors much smaller than

n/2



Computational performance
Time complexity

 Communication penalty: ratio between the real wall-clock time and the 

ideal time elapsed if there were no communications

 Large values for the communication penalty mean that the number of 

processors is close to p* and the parallelization is no longer efficient

 Amdahl law: if the sequential part of a code is a fraction f of the total

number of operations, then an upper bound for the speed-up exists such

that:

𝑆𝑝 ≤
1

𝑓 +  1 − 𝑓 𝑝
<
1

𝑓

for any p larger or equal than 1



Parallel algorithms

 The theoretical complexity of a parallel algorithm and the expected

performance can be analyzed using the graph theory

 A graph:

𝐺 = 𝑁, 𝐴

is a non-empty set made of nodes N and arches A that link a pair of 

nodes

 If each pair of nodes linked by an arch has an order, than the graph is

said to be direct

 Two nodes linked by an arch are adjacent or incident

 The degree of a node is the number of arches arriving to or departing

from it



Parallel algorithms

 If a finite number of nodes n1, n2, …, nk can be reached following the 

arches connecting two nodes we say that a path links n1 to nk

 If n1 = nk, with k > 2, the path is a cycle

 A graph is said to be connected if for any node i there exists a path that

brings to any other node j

 A parallel algorithm can be theoretically represented by a Direct A-cyclic

Graph (DAG)

 Every node is an operation and every arch denotes the data 

dependencies



Parallel algorithms

 Numerical example: compute (a+b)(b+c)=ab+b2+ac+bc

Algorithm 1 Algorithm 2



Parallel algorithms
Parallel numerical linear algebra

 Numerical linear algebra is one of the fields of scientific computing where

the use of parallel computers is particularly attractive

 For example, let’s consider an iteration of the Preconditioned Conjugate

Gradient method for solving a Symmetric Positive Definite linear system:

FOR k=0,… until convergence

t = Apk
ak = rk

Tpk/pk
Tt

xk+1 = xk + akpk
rk+1 = rk – akt

v = M-1rk+1
bk = - vTt/pk

Tt

pk+1 = v + bkpk
END FOR

Numerical kernels:

1. Vector update

2. Scalar Product

3. Matrix-vector product

4. Preconditioning



Parallel algorithms
Parallel numerical linear algebra

 Vector update:

 𝑥 ←  𝑥 + 𝛼  𝑝

is an embarassingly parallel operation

 Blocks of n/p consecutive components are assigned to each processor

 The update operations are independent each other

 Often, a good compiler is already able to exploit the presence of a multi-

core processor



Parallel algorithms
Parallel numerical linear algebra

 Scalar product:

𝑠 =  𝑥𝑇  𝑦 = 

𝑖=1

𝑛

𝑥𝑖𝑦𝑖

is a reduction operation

 Blocks of n/p consecutive components are assigned to each processor

 Each processor computes its own contribute

 The scalar product is the result of a reduction of all the scalars computed

by each processor

 The speed-up is close to be ideal if n >> p



Parallel algorithms
Parallel numerical linear algebra

 Matrix-vector product:

𝑏 = 𝐴  𝑥

is the union of n scalar products

 Stripes of n/p consecutive rows and blocks of n/p consecutive 

components are assigned to each processor

 Each processor computes its own scalar products

 A possible limit is that a processor in principle may need to access the 

components of any other processor

 Communications are limited in case of linear systems arising from the 

Finite Element discretization of PDEs



Parallel algorithms
Parallel numerical linear algebra



Parallel algorithms
Parallel numerical linear algebra

 If the linear system arises

from the FE discretization of 

PDEs, each stripe of A refers

to a subdomain of the 

computational grid

 The matrix partitioning

coincides with a domain 

decomposition where inner

and boundary variables can 

be identified

 The amount of interprocessor communications depends on the number of 

edges intercepted by each subdomain boundary

 An optimal domain decomposition can be obtained by appropriate graph

partitioning techniques that minimize the boundaries shared by the 

subdomains



Parallel algorithms
Parallel numerical linear algebra

 Preconditioning:

 𝑣 = 𝑀−1  𝑟

where M-1 is the preconditioner

 The actual cost of this operation depends on the selected preconditioner

 This operation can be the actual bottleneck for a parallel linear system

solution

 Sometimes, it is more convenient to use a non-optimal preconditioner, 

i.e., having a larger number of iterations to convergence, but highly

parallel (e.g., Jacobi)

 The number of iterations to converge can change even significantly with 

the number of processors



Parallel algorithms
Parallel numerical linear algebra

 Example of preconditioning: incomplete Cholesky decomposition

 We need to solve a lower and an upper system:

𝐿  𝑥 = 𝑏 𝐿𝑇  𝑣 =  𝑥and

 If L were dense, a parallel solution is impossible

 However, L is sparse and some parallelism can be gained by level

scheduling

 The efficiency of the parallel implementation is strictly dependent on the 

unknown numbering and progressively worsens as the number of 

processors grows



Parallel algorithms
Parallel numerical linear algebra

𝑙11 0
𝑙21 𝑙22

0 0
0 0

0 0
0 0

0 𝑙32
0 0

𝑙33 0
𝑙43 𝑙44

0 0
0 0

𝑙51 𝑙52
0 𝑙62

0 0
𝑙63 0

𝑙55 0
𝑙65 𝑙66

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

=

𝑏1
𝑏2
𝑏3
𝑏4
𝑏5
𝑏6

 Each level is made of the components

that can be computed independently

 The maximum number of processors is

equal to the maximum number of 

components belonging to a single level



Parallel algorithms
Parallel iterative methods

 For a general iterative method in the form:

 𝑥𝑘+1 = 𝑓  𝑥𝑘

parallelization can be performed by assigning a block of components to 

each processor with communications after each iteration



Parallel algorithms
Parallel iterative methods

 A barrier with an alignment of all processors is necessary after each

iteration, giving rise to a synchronous method

 The synchronization can be global or local

 For a better parallelization, we can use an asynchronous implementation

 Theoretical properties of the method are completely different

 Example: the Newton-Raphson iteration

𝑥𝑘+1 = 𝑥𝑘 −  𝑓 𝑥𝑘 𝑓′ 𝑥𝑘

with an asynchronous implementation can become:

𝑥𝑘+1 = 𝑥𝑘 −  𝑓 𝑥𝑘 𝑓′ 𝑥𝑗 𝑗 ≤ 𝑘

 Theoretical properties no longer hold, but the asynchronous method can 

be faster
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