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1 Basic concepts on iterative methods

Consider the linear system:

Ax = b (1)

with A an (n × n) real matrix and x, b ∈ R
n. If A is non singular the unique solution to

(1) is:

h = A−1b (2)

However, the explicit inversion of a matrix A arising from typical engineering applications,

such as the discretization with Finite Elements or Finite Differences of Partial Differen-

tial Equations (PDEs), is a task that cannot be realistically undertaken even on current

supercomputers. The main reason is twofold. First, A is typically large (n ≥ 106) but

very sparse, however A−1 is in general structurally dense and cannot be entirely stored.

Second, the computation of A−1 has a cost on the order of n3 operations, that would mean

years also on modern CPUs. This is why several algorithms have been developed to solve

numerically the system (1) avoiding the explicit computation of A−1.

Though in the last decade there has been an increasing contamination of ideas, for the

sake of simplicity we can still subdivide linear system solvers into two big classical groups,

i.e., direct and iterative methods. Roughly speaking, direct methods provide h through

a sequence of elementary operations whose number depends on the size n of matrix A.

The most common direct solvers are based on Gaussian elimination accelerated by proper

scaling and reordering algorithms. For large and sparse matrices arising from 3D problems,

direct methods are rarely the most efficient choice, as the required CPU time and storage

grow very quickly with n. Just to give an idea, to solve a relatively small linear system

with n = 21, 355 and 4,425,300 non-zero coefficients in A, requiring approximately 60

kbyte of storage, the total memory needed by a state-of-the-art Harwell Software Library

(HSL) routine is about 2 Gbyte. On the other hand, iterative methods find h by building

a converging sequence of approximants x1, x2, . . ., xk, starting from an initial guess x0.

Quite obviously, the method is convergent if:

lim
k→∞

xk = h (3)

Defining the error vector ek as:

ek = h− xk (4)

the convergence condition (3) is equivalent to:

lim
k→∞

‖ek‖ = 0 (5)

The construction of the next approximant xk+1 is obtained from xk by a recurrent rela-

tionship that typically requires only matrix-vector and scalar products.

A convergent iterative method produces theoretically the exact solution h after an

infinite number of steps. However, the procedure can be stopped when the approximate

solution xk is accurate enough. If this occurs after a small number of iterations, then
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iterative methods can be much more efficient than direct methods. The accuracy of the

current approximate solution can be evaluated using the relative error:

er =
‖ek‖
‖h‖ (6)

As h is not known, the relative error er cannot be used in practice as exit test. Let us

define the residual vector rk as:

rk = b−Axk (7)

It is easy to see that:

rk = Ah−Axk = Aek (8)

hence in a convergent iterative method the following relation holds true:

lim
k→∞

‖rk‖ = 0 (9)

The accuracy of the current approximate solution can be therefore evaluated using also

the relative residual rr as exit test:

rr =
‖rk‖
‖b‖ (10)

The exit test on rr is much more practical than that on er because the residual vector can

be always computed easily. However, it is important to link er to rr in order to ensure its

reliability. Write ek from equation (8) and use the well-known properties of compatible

matrix norms:

‖ek‖ ≤
∥

∥A−1
∥

∥ ‖rk‖ (11)

Similarly, recalling that b = Ah we have:

‖b‖ ≤ ‖A‖ ‖h‖ (12)

Combining the inequality (11) with (12), it can be easily obtained that:

‖ek‖
‖h‖ ≤ ‖A‖

∥

∥A−1
∥

∥

‖rk‖
‖b‖ (13)

Defining κ(A) = ‖A‖ ‖A−1‖ as the conditioning number of A, inequality (13) yields:

er ≤ κ (A) rr (14)

Therefore, a small relative residual does not guarantee that the relative error is also small

if the conditioning number of A is large. A better exit test should be:

κ (A) rr ≤ TOL (15)

but the cost and difficulty in computing κ(A) can prevent its use. If A is symmetric and

positive definite and the 2-norm is used in the definition of rr and er, the conditioning

number κ(A) turns out to be:

κ (A) =
λ1 (A)

λn (A)
(16)
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where λ1(A) and λn(A) are the largest and smallest eigenvalue of A, respectively. The

value of κ(A) computed as in (16) is also called spectral conditioning number of A. Hence,

for symmetric positive definite matrices the eigenspectrum of A can provide a measure of

the conditioning of the problem and the quality of the exit test on the relative residual.

The most classical iterative methods are stationary algorithms, such as Richardson,

Jacobi, Seidel and Successive Overrelation. These techniques converge linearly to the

solution h provided that the the spectral radius of the iteration matrix E:

E = I −M−1A (17)

is smaller than 1. In equation (17), M−1 is defined as a preconditioner for A, in the sense

that the productM−1A should be as close to the identity as possible. Stationary methods

are not competitive with modern direct methods because of their slow convergence rate.

More efficient techniques are based on the Krylov subspaces generated by matrix A. In

particular, special variants of these methods can be obtained if A is symmetric positive

definite.

2 Gradient methods for symmetric positive definite systems

If A is symmetric and positive definite, the solution to the system (1) can be easily re-

casted as an optimization problem. Generally speaking, an optimization problem consists

of finding the minimum of a cost function Φ depending on a vector of n parameters x

within an admittable domain Ω ⊆ R
n. The solution to an optimization problem is the

combination of parameters providing the minimum cost Φ. The gradient methods represent

a class of techniques used to solve optimization problems.

There are several ways to find the minimum of Φ. If Φ is derivable and its derivatives

can be easily computed, the direction of the gradient of Φ starting from an initial guess x0
can be used to search efficiently the minimum. Let us define as gradient of Φ the vector

∇Φ:
∇Φ =

[

∂Φ

∂x1
,
∂Φ

∂x2
, . . . ,

∂Φ

∂xn

]T

(18)

Given an oriented direction s ∈ R
n, the function Φ(x) either increases or decreases along

s in the neighbourhood of x0 if the scalar product sT∇Φ(x0) is either positive or negative,
respectively. Hence, the steepest variation of Φ in the neighbourhood of x0 can be found

just along the direction of ∇Φ(x0). The gradient methods are iterative techniques that

build a sequence of approximations of the minimum of Φ moving at the k-th step along

−∇Φ(xk) and defining xk+1 as the local minimum of Φ along that direction. This way an

n-dimensional problem is reduced to a sequence of one-dimensional minimum problems.

2.1 The Steepest Descent (SD)

Let us define the cost function Φ : Rn → R as:

Φ (x) =
1

2
(x− h)T A (x− h) (19)

3



Φ(  )x

h

x 1

x 2

Figure 1: Cost function Φ(x) for n = 2.

Recalling the error definition (4), equation (19) can be also written as:

Φ (x) =
1

2
eTAe (20)

If A is symmetric and positive definite, Φ is certainly positive for any e 6= 0 and is minimum

for e = 0, i.e., x = h. The cost function Φ(x) defined in (19) is a quadratic form that

has its unique and absolute minimum in h. Hence, the solution h can be computed by

minimizing Φ(x).

It is possible to reconstruct the shape of the cost function by analyzing its equipotential surfaces:

Φ (x) = c (21)

where c is a constant real parameter. Equation (21) defines a class of surfaces depeding on c. To

better understand the structure of these surfaces, let us operate a coordinate change using the

eigenvectors u1, u2, . . ., un as new reference system. As A is symmetric positive definite, u1, u2,

. . ., un generate an orthonormal basis of Rn. The error e in the new reference reads:

e = z1u1 + z2u2 + . . .+ znun (22)

where zi is the component of e along the eigenvector ui. Collecting the zi values in the vector z

and the eigenvectors ui as columns of the matrix U , equation (22) can be written in a compact

form as:

e = Uz (23)

Recall that U is orthogonal, i.e., UT = U−1. Moreover, A is also diagonalizable. Denoting by Λ

the diagonal matrix containing its eigenvalues, A can be written as:

A = UΛUT (24)

Using equations (23) and (24), the equipotential surface (21) in the new reference of the eigenvectors

of A reads:

Φ (z) =
1

2
zTUTUΛUUT z =

1

2
zTΛz = c (25)

i.e.:

λ1z
2
1 + λ2z

2
2 + . . .+ λnz

2
n = 2c (26)
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Figure 2: New approximation xk+1 for n = 2.

The geometrical interpretation of equation (26) is trivial for n = 2. In fact, it reads:

z21
2c/λ1

+
z22

2c/λ2
= 1 (27)

that is the equation of an ellipse referred to its axes. Hence, Φ(x) with n = 2 is nothing but

a positive paraboloid with vertex in h (Figure 1). The equipotential surfaces consist of a set of

concentric ellipsis whose axes have the direction of the eigenvectors of A and length equal to:

2

√

2c

λ1
, 2

√

2c

λ2
(28)

The solution h is the center of the set of ellipsis. In R
n, the equipotential surfaces of Φ(x) are

a set of hyperellipsoids with axes defined by the eigenvectors of A and length depending on the

eigenvalues of A according to a generalization of equation (28). The geometric center of this set of

hyperellipsoids is the solution h.

The basic idea is to reach the minimum of Φ, i.e., the center of the set of hyperellipsoids

associated to A, moving along the direction of the gradient of Φ. Assume that at the k-th

step we know the tentative solution xk and we want to find a new approximation xk+1

closer to h. The gradient of Φ in xk reads:

∇Φ (xk) =
1

2
∇
[

(xk − h)T A (xk − h)
]

(29)

Recalling that Ah = b and A = AT , equation (29) yields:

∇Φ (xk) =
1

2
∇
[

xTkAxk − 2xTk b+ hTb
]

(30)

Deriving with respect to xk we obtain:

∇Φ (xk) = Axk − b = −rk (31)

i.e., the direction of the gradient of the cost function in xk is equal to that of the residual

vector rk. As the gradient is oriented toward an increase of Φ(x), to find the minimum
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we should move in the opposite way, i.e., along −∇Φ(xk) = rk. By definition of gradient,

the residual vector rk is also orthogonal to the equipotential surface obtained setting

c = Φ(xk). Starting from xk and moving along rk, we define xk+1 as the point where

Φ(x) is locally minimum (Figure 2). This is an easy problem, as it coincides with the

minimization of a parabola. The new approximation xk+1 can be written as:

xk+1 = xk + αkrk (32)

where αk is the real parameter such that Φ(xk+1) is minimum:

αk = argmintΦ (xk + trk) (33)

Such a minimum is uniquely determined by deriving Φ(xk+1) with respect to αk and

setting to 0. Using the chain rule to differentiate yields:

∂Φ

∂αk

=
∂Φ

∂xk+1
· ∂xk+1

∂αk

= rTk (Axk+1 − b) = 0 (34)

where, recalling equation (32), we obtain:

rTk (−rk + αkArk) = 0 ⇒ αk =
rTk rk

rTkArk
(35)

Equation (34) suggests two important observations. First, the minimum condition for Φ along

rk yields:

rTk rk+1 = 0 (36)

i.e., consecutive residual vectors are orthogonal. Second, comparing equations (34) and (35) we

obtain:

rk+1 = rk − αkArk (37)

i.e., it is possible to compute the new residual making no use of xk+1. The recurrent relationship

(37) is more convenient than the definition of residual vector from a computational point of view,

as it uses again the product Ark, already stored for αk, instead of computing also Axk+1.

The resulting iterative method is called Steepest Descent (SD) and can be summarized

by the following algorithm:

Algorithm 1: Steepest Descent

1. Choose x0

2. Compute r0 = b−Ax0
3. Do k = 0, . . . until convergence

4. αk = rTk rk/r
T
kArk

5. xk+1 = xk + αkrk

6. rk+1 = rk − αkArk
7. End Do

The convergence rate of the SD method is governed by:
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Figure 3: Convergence of the SD method for n = 2.

Theorem. Let A be symmetric and positive definite. Then the energy A-norm of ek

generated by Algorithm 1 satisfy the inequality:

‖ek‖A ≤ µk ‖e0‖A (38)

with µ = κ(A)−1
κ(A)+1 , and Algorithm 1 converges for any initial guess x0.

Proof. The energy A-norm of a vector d is defined as:

‖d‖A =
√

dTAd (39)

The result (38) follows immediately applying the Kantorovich inequality. For details, see Saad

(2003), Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, pp. 138–140. 2

The previous theorem guarantees the convergence of the SD method and provides an

upper bound for the error decrease:

‖ek‖A
‖e0‖A

≤ µk (40)

For k going to infinity, the right-hand side of (40) goes to 0 as µ < 1. In particular, if

λ1 = λ2 = . . . = λn then µ = 0 and Algorithm 1 converges to h in just one iteration for

any initial guess x0. However, if κ(A) is much larger than 1, then µ ≃ 1 and convergence

can be very slow. Unfortunately, this is typically the case with matrices arising from the

discretization of PDEs. An intuitive reason for such a behavior is schematically provided

in Figure 3 using the equipotential surfaces of a system with n = 2. The search directions

generate a zig-zag path toward the geometric center of the ellipses. With eccentric ellipses

the number of iterations required to achieve the convergence can be quite large, while with

“almost circular” ellipses convergence is fast independently of the starting point.
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Figure 4: Pair of conjugate directions with respect to an ellipse.

2.2 The Conjugate Gradient (CG)

The Conjugate Gradient (CG) method was introduced in 1952 by Hestenes and Stiefel

as an acceleration of the SD algorithm. The basic idea consists of modifying the search

direction for the computation of xk+1 so as to produce a faster convergence to the global

minimum of Φ.

Given xk, the new approximation xk+1 is computed with a recurrent relationship sim-

ilar to (32) where a new search direction pk is used instead of rk:

xk+1 = xk + αkpk (41)

The initial search direction p0 is set to r0 as in the SD scheme. The new search direction

p1 is computed as a correction to the gradient of Φ in x1:

p1 = r1 + β0p0 (42)

such that p1 be A-orthogonal to p0, i.e.:

pT
1Ap0 = 0 (43)

Introducing equation (42) into (43) allows for computing β0 as:

β0 = −
rT1Ap0

pT
0Ap0

(44)

Geometrically, two A-orthogonal directions are conjugate with respect to the conic generated by

A. For example, Figure 4 shows a pair of conjugate directions with respect to the conic generated

by a 2× 2 symmetric positive definite matrix, i.e., an ellipse. If p0 is tangential to the ellipse, then

p1 goes towards the geometric center. Hence, it can be easily deduced that the CG method will

converge to h in a 2× 2 linear system in just two iterations.

8



Generalizing equations (42) and (44) to any step k yields:

pk+1 = rk+1 + βkpk (45)

with:

βk = −
rTk+1Apk

pT
kApk

(46)

The expression for the scalar αk in (41) is slightly different than in the SD method because

of the use of the new search direction pk. Recalling the chain rule to differentiate Φ(xk+1)

and using equation (41) provides:

∂Φ

∂αk

=
∂Φ

∂xk+1
· ∂xk+1

∂αk

= pT
k (Axk+1 − b) = 0 (47)

that gives:

pT
k (−rk + αkApk) = 0 ⇒ αk =

rTk pk

pT
kApk

(48)

Equation (48) shows also that pk and rk+1 are orthogonal for any k, and that the residual

vector at the (k + 1)-th step can be also computed as:

rk+1 = rk − αkApk (49)

which is a convenient recurrent relationship similar to the one used in the SD scheme. The

final CG method can be summarized as follows:

Algorithm 2: Conjugate Gradient

1. Choose x0

2. Compute r0 = b−Ax0 and set p0 = r0

3. Do k = 0, . . . until convergence

4. αk = rTk pk/p
T
kApk

5. xk+1 = xk + αkpk

6. rk+1 = rk − αkApk

7. βk = −rTk+1
Apk/p

T
kApk

8. pk+1 = rk+1 + βkpk

9. End Do

From a computational viewpoint, one CG iteration is only slightly more expensive than

an SD iteration, implying one additional scalar product and vector update. However, the

CG algorithm is much more robust than SD because of the following important result:

Theorem. Let A be symmetric positive definite, with r0, r1, . . ., rk and p0, p1, . . ., pk

the sequence of residual vectors and search directions generated by k steps of Algorithm 2.

Then the vectors rk+1 and pk+1 satisfy the equations:

rTk+1rj = 0 ∀ j ≤ k (50)

pT
k+1Apj = 0 ∀ j ≤ k (51)
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Proof. The theorem can be proved by induction. For k = 0 the thesis is trivially true. In fact,

pT
1 Ap0 = 0 by definition, while using equation (49) with p0 = r0 gives:

rT1 r0 =

(

r0 −
rT0 r0

rT0 Ar0
Ar0

)

r0 = 0 (52)

Let us assume that the thesis holds true for k:

rTk rj = 0 ∀ j ≤ k − 1 (53)

pT
kApj = 0 ∀ j ≤ k − 1 (54)

and prove that equations (53) and (54) imply equations (50) and (51). Recalling (49), the condition

(50) reads:

rTk+1rj = (rk − αkApk)
T
rj = −αkp

T
kArj (55)

Introduce in equation (55) the expression for rj obtained from (45):

rTk+1rj = −αk

(

pT
kApj − βj−1p

T
kApj−1

)

= 0 (56)

Finally, using equation (45) into (51) yields:

pT
k+1Apj = (rk+1 + βkpk)

T
Apj = rTk+1Apj (57)

where, replacing the product Apj obtained from (49), we have:

pT
k+1Apj =

1

αj
(rk+1rj − rk+1rj−1) = 0 (58)

2

The previous result is also known as the finite termination property of CG. After n

steps, the residual vector rn is simultaneously orthogonal to all previous n residual vectors

in R
n. The only vector satisfying this condition is rn = 0, that implies xn = h. Hence,

the CG algorithm converges theoretically in at most n iterations.

An alternative formulation is also possible for Algorithm 2 exploiting a few useful relations. It

is easy to prove that pT
k rk = rTk rk. Recalling equation (45) we have:

pT
k rk = rTk rk + βk−1p

T
k−1rk (59)

The second addendum at the right-hand side of equation (59) can be also developed using the

recurrent relation (45). As the residual vectors are orthogonal, equation (59) becomes:

pT
k rk = rTk rk + βk−1βk−2p

T
k−2rk (60)

Replacing again pk−2 with the recurrent relation (45) and going backward until p0 we obtain:

pT
k rk = rTk rk +





k−1
∏

j=0

βj



 rT0 rk = rTk rk (61)

Recalling the A-orthogonality of pk and any previous pj , it is also easy to observe that pT
kApk =

rTkApk. Then, using the recurrent relation (49) to express Apk yields:

pT
kApk =

1

αk
rTk (rk − rk+1) =

1

αk
rTk rk (62)
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Similarly, we obtain:

rTk+1Apk =
1

αk
rTk+1 (rk − rk+1) = −

1

αk
rTk+1rk+1 (63)

Using equation (61) through (63) the scalar parameters αk and βk can be also computed as:

αk =
rTk rk

rTkApk

(64)

βk =
rTk+1

rk+1

rTk rk
(65)

Introducing the new scalar parameter ρk = rTk rk, an equivalent variant to Algorithm 2 is the

following:

Algorithm 3: Conjugate Gradient

1. Choose x0

2. Compute r0 = b−Ax0 and set p0 = r0

3. Compute ρ0 = rT0 r0

4. Do k = 0, . . . until convergence

5. αk = ρk/r
T
kApk

6. xk+1 = xk + αkpk

7. rk+1 = rk − αkApk

8. ρk+1 = rTk+1
rk+1

9. βk = ρk+1/ρk
10. pk+1 = rk+1 + βkpk

11. End Do

The CG convergence is controlled by an inequality similar to that obtained for SD. In

particular, the following result holds true:

Theorem. Let A be symmetric and positive definite. Then the energy A-norm of ek

generated by Algorithm 2 satisfy the inequality:

‖ek‖A ≤ µk1 ‖e0‖A (66)

with µ1 =

√
κ(A)−1√
κ(A)+1

.

Proof. The result (66) can be obtained by using the Chebyshev polynomials. For details, see

Saad (2003), Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, pp. 198–205. 2

Similarly to the SD scheme, the convergence of CG can be very fast only if the con-

ditioning number of A is close to 1. In particular, the inequality (66) can be useful to

provide an estimate of the number of iterations required to decrease the energy A-norm

of the initial error by p orders of magnitude:

‖ek‖A
‖e0‖A

≤ 10−p ⇒
(

√

κ (A)− 1
√

κ (A) + 1

)k

= 10−p (67)
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Taking the natural logarithms at both sides of the rightmost equation (67) and using the

first-order Taylor expansion:

ln

√

κ (A)− 1
√

κ (A) + 1
≃ −2
√

κ (A) + 1
(68)

we obtain:

k ≃ p ln 10

2

(

√

κ (A) + 1
)

(69)

i.e., the number of iterations required to decrease the energy A-norm of the initial error

by p orders of magnitude is proportional to the square root of κ(A).

2.2.1 The Preconditioned CG (PCG)

For a long time, the actual potential of the CG method for solving symmetric positive definite linear

systems went underrated. The main reason relies on the fact that in view of its finite termination

property CG was initially regarded as a direct method able to provide the exact solution after at

most n iterations, with n the size of matrix A. The theoretical maximum number of iterations

needed to achieve h is actually equal to the number of distinct eigenvalues of A. However, as a

direct method the CG algorithm is not competitive with a classical Gaussian elimination, except

from a few lucky cases. In fact, the approximate computational cost of each iteration of CG is

of the order of n2 operations for the matrix-vector product and 3n for the three scalar products.

Stopping the algorithm after n iterations produces an overall cost of about n3 + 3n2 operations

which is superior to that of a standard Gaussian elimination. Moreover, it was soon clear that

the finite termination property is only theoretical, as the actual number of iterations needed to

achieve convergence can be also equal to 10n because of the rounding errors committed in finite

arithmetics. Hence, the CG method can have a practical interest only if a sufficiently good accuracy

can be obtained in a number of iterations much smaller than n. This result can be obtained by

using an appropriate preconditioner.

Recalling equation (69), the error in the CG algorithm can decrease rapidly if the

conditioning number of the system matrix is close to 1, i.e., the eigenvalues of A are clus-

tered around a non-zero value. For example, such a condition occurs if the system matrix

resembles the identity from a spectral point of view. The basic idea of preconditioning

relies on transforming the original problem Ax = b into an equivalent one By = c such

that the eigenspectrum of B be much more favorable for a CG iteration. Let X−1 be a

non singular symmetric positive definite matrix. The native system (1) can be re-written

as:

X−1AX−1Xx = X−1b (70)

where we can set B = X−1AX−1, y = Xx and c = X−1b. Notice that the matrix B is still

symmetric positive definite, hence the CG method can be applied. The Preconditioned

CG (PCG) algorithm consists of re-formulating the Algorithm 2 for the system (70) with

12



the new variables:

yk = Xxk (71)

p′

k = Xpk (72)

r′k = c−Byk = X−1rk (73)

The new scalar coefficient α′

k computed to minimize Φ along the search direction p′

k reads:

α′

k =
r′Tk p′

k

p′T
k Bp′

k

=
rTk pk

pT
kApk

= αk (74)

while the recurrent relationship to update the system solution:

yk+1 = yk + α′

kp
′

k (75)

using equations (71) and (74) becomes:

Xxk+1 = Xxk + αkXpk (76)

i.e., still equation (41) if we pre-multiply both sides of (76) byX−1. Similarly, the recurrent

relation to update the preconditioned residual vector is:

r′k+1 = r′k − α′

kBp′

k (77)

i.e.:

X−1rk+1 = X−1rk − αkX
−1AX−1Xpk (78)

that again coincides with equation (49) if we pre-multiply both sides of (78) by X. Finally,

we need the recurrent relation to update the search direction. The new scalar coefficient

β′k that prescribes the A-orthogonality between p′

k+1 and p′

k is:

β′k = −
r′Tk+1Bp′

k

p′

kBp′

k

= −
rTk+1M

−1Apk

pT
kApk

(79)

where M−1 = X−1X−1. As a consequence, the recurrent relation for computing p′

k+1:

p′

k+1 = r′k+1 + β′kp
′

k (80)

reads:

Xpk+1 = X−1rk+1 + β′kXpk (81)

Pre-multiplying both sides of (81) by X−1 we obtain:

pk+1 =M−1rk+1 + βkpk (82)

In other words, as compared to Algorithm 2 the PCG scheme simply requires the addi-

tional computation of M−1rk+1 at each iteration. Therefore, the PCG algorithm can be

summarized as follows:
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Algorithm 4: Preconditioned Conjugate Gradient

1. Choose x0 and M−1

2. Compute r0 = b−Ax0 and set p0 =M−1r0

3. Do k = 0, . . . until convergence

4. αk = rTk pk/p
T
kApk

5. xk+1 = xk + αkpk

6. rk+1 = rk − αkApk

7. βk = −rTk+1
M−1Apk/p

T
kApk

8. pk+1 =M−1rk+1 + βkpk

9. End Do

Quite obviously, the cost per iteration increases because of the computation ofM−1rk+1.

Hence, the PCG algorithm is convenient if it produces an accurate approximation of h

within a number of iterations much smaller than n. To this aim, M−1 must be selected so

as to cluster as much as possible the eigenvalues of B away from zero, e.g., around unity.

As B is similar to AM−1, our objective is to select M−1 such that:

AM−1 ≃ I ⇒ M−1 ≃ A−1 (83)

The selection of a good preconditioner is the key factor for the success of the CG algorithm

which is currently the method of choice for large sparse symmetric positive definite systems.

There are several different ways for accomplishing the condition (83) taking into account

that the computation of both M−1 and M−1rk+1 should be as cheap as possible. For a

recent review of this topic, see Ferronato (2012), Preconditioning for sparse linear systems

at the dawn of the 21st century: history, current developments, and future perspectives,

ISRN Applied Mathematics, 49 pages, doi: 10.5402/2012/127647.

3 Iterative methods for general systems

The PCG method converges only on symmetric positive definite matrices. In fact, remov-

ing such a hypothesis does no longer guarantees that Φ(x) as defined in (19) has a unique

absolute minimum coinciding with the solution vector h. Computational experiences show

that it is still possible to have convergence of PCG with either “slightly” non symmetric

matrices or special preconditioners defined for indefinite saddle-point problems. For gen-

eral matrices, however, PCG cannot be used. This is why several attempts for generalizing

PCG also for non symmetric systems have been done in the past years.

The simplest idea for using PCG on general matrices relies on symmetrizing the system by

pre-multiplying both sides of (1) by AT :

ATAx = ATb (84)

The new problem (84) is denoted as system of normal equations. This problem, however, is usually

much more ill-conditioned than (1). It is well-known that the eigenvalues of ATA satisfy the

inequality:

|λn (A)|2 ≤ λi
(

ATA
)

≤ |λ1 (A)|2 ∀ i = 1, . . . , n (85)
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hence are spread over a much larger interval than those of A. Moreover, ATA can be much denser

than A and too expensive to compute and store. This is not a problem for the PCG algorithm

in itself, as we just need a rule to compute the product between the system matrix and a vector.

However, the actual difficulty relies in computing a good preconditioner for a matrix whose explicit

form is not known.

The most successful approach is based on approximating h in proper subspaces of Rn

with an increasing size, selecting somewhat an “optimal” solution into each subspace. As

the size of the subspaces grows the approximate solution gets closer and closer to h. The

subspaces where searching the approximate solution can be selected by splitting R
n with

the aid of projection operators.

3.1 The Generalized Minimal Residual (GMRES)

The Generalized Minimal Residual (GMRES) method was introduced in 1986 by Saad

and Schultz. It is based on finding the approximate solution xm into a subspace Km ⊂ R
n

of size m < n by minimizing the 2-norm of the current residual vector rm. The subspace

Km where xm is found is defined as:

Km = span
{

r0, Ar0, A
2r0, . . . , A

m−1r0
}

(86)

where, as usual, r0 is the residual vector associated to an arbitrary initial guess x0. The

space defined in equation (86) is also denoted as Km(A, r0) and is called Krylov subspace

of size m generated by A and r0. To exploit also the possible knowledge of a “good” initial

guess x0, we look for the approximation xm belonging to x0 + Km(A, r0). Therefore, the

problem we aim at solving can be formally re-casted as follows. Find xm as:

xm = x0 + y, y ∈ Km (A, r0) (87)

such that:

‖rm‖2 = ‖b−Axm‖2 = min (88)

over all vectors xm given in the form (87). Starting from the Krylov subspace of size

1 generated by r0 and increasing m at each iteration, the solution to the problem (87)

subject to the condition (88) generates a sequence of vectors x1, x2, . . ., xm converging to

h. Quite obviously, when m = n the condition (88) produces exactly h, hence similarly to

CG the GMRES method is characterized by the finite termination property.

As y belongs to Km(A, r0) it can be written as a linear combination of the basis vectors:

y = c1r0 + c2Ar0 + c3A
2r0 + . . .+ cmA

m−1r0 =
m
∑

k=1

ckA
k−1r0 (89)

Therefore, xm depends on the m scalar coefficients c1, c2, . . ., cm that can be determined

imposing the condition (88). Unfortunately, writing y as in (89) is not a good choice in

finite arithmetics because the basis r0, Ar0, . . ., A
m−1r0 is only “little linearly indepedent”.
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In fact, it can be proved that:

Akr0 = u1 +O

( |λ2|
|λ1|

)k

(90)

i.e., the vectors of the basis tend to be parallel to the eigenvector u1 associated to the first eigenvalue

λ1 of A. The result (90) can be easily proved for symmetric positive definite matrices. In this case,

the eigenvectors u1, u2, . . ., un of A form an orthonormal basis of Rn, so that r0 can be written

as:

r0 = r1u1 + r2u2 + . . .+ rnun (91)

Using equation (91), the general vector Akr0 reads:

Akr0 = r1λ
k
1u1 + r2λ

k
2u2 + . . .+ rnλ

k
nun (92)

Collecting λk1 at the right-hand side of (92) yields:

Akr0 = λk1

[

r1u1 +

(

λ2
λ1

)k

u2 + . . .+

(

λn
λ1

)k

un

]

(93)

that proves (90). It can be shown that the hypothesis of symmetry and positive definiteness of A

can be actually removed, hence the result (90) holds true for any matrix A.

In finite arithmetics, the basis vectors for Km(A, r0) are practically parallel to u1

already with m ≃ 3÷ 4. Therefore, it is desirable to express y through a more convenient

basis of Km(A, r0), e.g., using an orthonormal set of m vectors. The transformation of the

native basis to an orthonormal one can be performed by using a Gram-Schmidt procedure.

Assume that g1, g2, . . ., gm is a linearly independent basis for a subspace G ⊂ R
n of size

m. The first vector v1 of an orthormal basis of G is simply computed by normalizing g1:

v1 =
g1

‖g1‖2
(94)

Then, the second vector v2 is obtained as:

v̂2 = g2 −
(

gT2 v1
)

v1, v2 =
v̂2

‖v̂2‖2
(95)

It is easy to prove that v̂2 is orthogonal to v1. Once v̂2 is available, it can be trivially

normalized. Similarly, the third vector v3 is:

v̂3 = g3 −
(

gT3 v1
)

v1 −
(

gT3 v2
)

v2, v3 =
v̂3

‖v̂3‖2
(96)

and so on. Generalizing equation (96) to the computation of vk+1 yields:

v̂k+1 = gk+1 −
k
∑

j=1

hjkvj , vk+1 =
v̂k+1

‖v̂k+1‖2
(97)

where each scalar coefficient hjk is defined as:

hjk = gTk+1vj (98)
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For the Krylov subspace Km(A, r0) we have:

g1 = r0 (99)

g2 = Ar0 = Ag1 (100)

g3 = A2r0 = Ag2 (101)

...

i.e., each vector gk can be simply obtained by a matrix-vector product with the last vector

of the basis. Thus, at the (k + 1)-th step of the Gram-Schmidt procedure gk+1 can be

computed as Avk and equation (97) reads:

v̂k+1 = Avk −
k
∑

j=1

hjkvj , vk+1 =
v̂k+1

‖v̂k+1‖2
(102)

with:

hjk = vTkA
Tvj = vTj Avk (103)

Recalling that v̂k+1 = ‖v̂k+1‖2vk+1, equation (102) can be also written as:

‖v̂k+1‖2 vk+1 = Avk −
k
∑

j=1

hjkvj (104)

Pre-multiplying both sides of equation (104) by vTk+1 and exploiting the fact that all vectors

vj are orthonormal by construction, we achieve the following result:

‖v̂k+1‖2 = vTk+1Avk = hk+1,k (105)

On summary, the Gram-Schmidt procedure to build an orthonormal basis for Km(A, r0)

proceeds as follows:

Algorithm 5: Gram-Schmidt

1. Set β = ‖r0‖2 and v1 = r0/β

2. Do k = 1, . . . ,m

3. Do j = 1, . . . , k

4. hjk = vTj Avk
5. End Do

6. v̂k+1 = Avk −
∑k

j=1
hjkvj

7. hk+1,k = ‖v̂k+1‖2
8. vk+1 = v̂k+1/hk+1,k

9. End Do

It is well-known that the standard Gram-Schmidt procedure is computationally unstable as it

can soon produce non-orthogonal vectors because of rounding errors. There are several different

alternative formulations which are mathematically equivalent to Algorithm 5 but possess better

numerical properties. One of the most popular Modified Gram-Schmidt procedure is the following:
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=A V m+1Vm

H m

Figure 5: Schematic representation of equation (113).

Algorithm 6: Modified Gram-Schmidt

1. Set β = ‖r0‖2 and v1 = r0/β

2. Do k = 1, . . . ,m

3. wk+1 = Avk
4. Do j = 1, . . . , k

5. hjk = wT
k+1

vj

6. wk+1 ← wk+1 − hjkvj
7. End Do

8. hk+1,k = ‖wk+1‖2
9. vk+1 = wk+1/hk+1,k

10. End Do

Using either Algorithm 5 or 6 we are able to compute an orthonormal basis for

Km(A, r0). The vector y of equation (87) can now be written as:

y = z1v1 + z2v2 + . . .+ zmvm = Vmz (106)

where z ∈ R
m and Vm is the n × m matrix with the vectors vj , j = 1,m, as columns.

Hence, the problem to be solved at each GMRES iteration can be re-formulated as follows.

Find z ∈ R
m such that ‖rm‖2 is minimum over the current Krylov subspace Km(A, r0).

Let us consider again equation (102) where v̂k+1 is written using (105):

hk+1,kvk+1 = Avk −
k
∑

j=1

hjkvj (107)

Extending the summation at the right-hand side to the left-hand side we have:

Avk =
k+1
∑

j=1

hjkvj (108)
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that for k = 1, . . . ,m explicitly reads:

Av1 = h11v1 + h21v2 (109)

Av2 = h12v1 + h22v2 + h32v3 (110)

Av3 = h13v1 + h23v2 + h33v3 + h43v4 (111)

...

Avm = h1mv1 + h2mv2 + . . .+ hmmvm + hm+1,mvm+1 (112)

Using the matrix Vm as defined above, equations (109)-(112) can be also written in the

compact matrix form as (Figure 5):

AVm = Vm+1Hm (113)

where Hm is an (m + 1) × m matrix with an upper Hessemberg form collecting all the

scalars hjk:

Hm =





















h11 h12 h13 · · · h1m
h21 h22 h23 h2m
0 h32 h33 h3m
0 0 h43 h4m
...

. . .
...

0 0 0 . . . hm+1,m





















(114)

Using equations (87) and (106) yields the following expression for the residual vector rm:

rm = b−A (x0 + Vmz) = r0 −AVmz (115)

Then, with equation (113) we have:

rm = r0 − Vm+1Hmz (116)

Recall also that the first column of Vm+1 is v1, i.e., r0/β, where β = ‖r0‖2. Hence, the

initial residual r0 can be also written as:

r0 = βVm+1i1 (117)

where i1 = [1, 0, 0, . . . , 0]T ∈ R
m+1. Using equation (117), the residual vector at the m-th

step reads:

rm = Vm+1

(

βi1 −Hmz
)

(118)

As V T
m+1Vm+1 = I by construction, the 2-norm of rm is given by:

‖rm‖2 =
∥

∥βi1 −Hmz
∥

∥

2
(119)

The Hessemberg matrix Hm is rectangular, so generally Hmz = βi1 has no solution and

‖rm‖2 6= 0. However, z can be computed so as to minimize of the right-hand side of

equation (119), i.e., by solving a least-square problem of size m. This task is very cheap
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if m is much smaller than n, e.g., m ≤ 100. The minimization of ‖rm‖2 is performed by

deriving the right-hand side of (119) with respect to z and setting to 0:

∂

∂z

∥

∥βi1 −Hmz
∥

∥

2

2
= 2H

T

m

(

βi1 −Hmz
)

= 0 (120)

i.e., solving an m×m system of normal equations:

H
T

mHmz = βH
T

mi1 (121)

As is well-known, any system of normal equations is ill-conditioned. An efficient way for

copying with this problem relies on using a QR factorization of Hm, obtained either with

a Modified Gram-Schmidt or a Householder process. In both cases, Hm is decomposed as:

Hm = QR (122)

where Q is an (m+1)× (m+1) orthogonal matrix and R is an (m+1)×m “quasi-upper

triangular” matrix in the form:

R =





















r11 r12 r13 · · · r1m
0 r22 r23 r2m
0 0 r33 r3m
...

. . .
...

0 0 0 · · · rmm

0 0 0 · · · 0





















=

[

R̃

0

]

(123)

i.e., an m ×m upper triangular matrix R̃ plus a null row. Introducing the factorization

(122) into equation (121) yields:

RTRz = RT
(

βQT i1
)

(124)

that is the solution to the least-square problem:

z = argmint ‖d−Rt‖22 (125)

where d = βQT i1. As the last row of R is null, the minimum of ‖d − Rz‖2 is simply

obtained when:

R̃z = d̃ (126)

with d̃ the vector collecting the first m components of d. The system (126) is quite small

and upper triangular, so its solution is trivial and relatively inexpensive. Finally, note that

the 2-norm of the current residual vector is immediately available as the last component

of d. In fact, using equation (123) and recalling the condition (126) lead to:

‖rm‖2 =
∥

∥

∥

∥

∥

[

d̃

dm+1

]

−
[

R̃

0

]

z

∥

∥

∥

∥

∥

2

= |dm+1| (127)

On summary, the overall GMRES algorithm runs as follows:
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Algorithm 7: Generalized Minimal Residual

1. Choose x0

2. Compute r0 = b−Ax0
3. Set β = ‖r0‖2 and v1 = r0/β

4. Do k = 1, . . . until convergence

5. Update Vk
6. wk+1 = Avk
7. Do j = 1, . . . , k

8. hjk = wT
k+1

vj

9. wk+1 ← wk+1 − hjkvj
10. End Do

11. hk+1,k = ‖wk+1‖2
12. vk+1 = wk+1/hk+1,k

13. Update Hk

14. Compute Q and R such that Hk = QR

15. d = βQT i1

16. Solve R̃z = d̃

17. xk = x0 + Vkz

18. End Do

Notice that in Algorithm 7 the computation of the approximate solution in line 17

could be actually performed only at the end of the iterative process. In fact, the current

residual norm is known independently of xk from the computation of d in line 15.

3.1.1 Computational issues

GMRES is an optimal iterative method in the sense that it satisfies a minimization prop-

erty at each step of the procedure, hence the solution is somewhat the “best” one at

every iteration. This implies the finite termination property which ensures that the ex-

act solution is achieved in infinite precision after at most n iterations. The only possible

breakdown in Algorithm 7 can occur if hk+1,k = 0, i.e., the new vector computed to enlarge

the current Krylov subspace is null. Such an occurrence means that the size of Kk cannot

be further increased, hence the solution h must lie in Kk and xk = h. This is called lucky

breakdown of the GMRES algorithm, as convergence is achieved in less than n steps.

The convergence rate of GMRES cannot be easily related to the eigenvalue distribution

of A as in the CG method. Assuming that A is diagonalizable:

A = UΛU−1 (128)

with Λ, U ∈ C
n×n, it can be proved by using the Chebyshev polynomials that after k

GMRES iterations the ratio between the current and the initial 2-norms of the residual

vector satisfy the following inequality:

‖rk‖2
‖r0‖2

≤ κ (U)min
Pk

‖pk (Λ)‖∞ (129)
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where Pk is the space of polynomials of degree k and pk ∈ Pk. The upper bound (129)

shows that convergence of GMRES depends not only on the distribution of the eigenvalues

of A, but also on the conditioning number of the matrix of the eigenvectors. Neverthe-

less, the computational experience shows that in engineering problems arising from the

discretization of PDEs a good clustering of the eigenvalues of A away from the origin of

the complex plane usually denotes a favorable condition for a fast convergence. This is

why preconditioning can be effectively used also in the GMRES algorithm, though its role

is not as clear as in the PCG method.

In the GMRES method two kinds of preconditioning can be used:

1. left preconditioning:

M−1Ax =M−1b (130)

2. right preconditioning:

AM−1y = b, x =M−1y (131)

Right preconditioning is generally preferable, as with system (130) the preconditioned

residual is actually minimized:
∥

∥M−1rk
∥

∥

2
= min (132)

with no control on the size of the true residual. If the preconditioner M−1 is available

in a factored form, then split preconditioning is also possible coupling both left and right

preconditioning. Applying the Algorithm 7 on either system (130) or (131) implies adding

the additional vector s =M−1wk+1 for the computation of hjk:

hjk = vTj M
−1wk+1 = sTvj (133)

From the computational point of view, GMRES is a very expensive method for both the

required storage and the number of operations. As far as the storage is concerned, at each GMRES

iteration all vectors vk forming the basis of the current Krylov subspace must be kept in memory.

For large values of k, e.g., on the order of hundreds, the required storage may become really

significant. In any case, reaching a number of iterations of the order of the matrix size n, as

it would be required by the finite termination property, is thouroughly unfeasible. As to the

computational cost, the number of operations required by the Modified Gram-Schmidt increases

with the iteration count. Moreover, the size of Hk and R̃ grows at each iteration, and the related

cost may become a price too high to pay. This is the consequence of the fact that GMRES is a

long-term recurrence, i.e., it needs an increasing number of vectors to compute the sequence of

approximate solutions.

To reduce the computational cost of GMRES some practical implementations have

been advanced. The most popular solution relies on setting a maximum number p of

vectors vk to store. At the (p+1)-th iteration a new Krylov subspace is built starting from

the last residual rp. This variant gives rise to the Restarted GMRES, usually denoted as

GMRES(p). The advantage of GMRES(p) is that the storage and the computational cost
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of each iteration remain limited. However, the optimal GMRES properties are theoretically

lost, so that GMRES(p) is no longer guaranteed to converge.

3.2 Projection methods

The basic idea of projection techniques consists of extracting an approximate solution

to problem (1) from Km(A, r0) by defining a projection operator that depends on m

constraints. A typical way to do so is to prescribe m independent orthogonality conditions

on the residual vector rm, thus implicitly defining another subspace Lm. In other words,

we seek an approximate solution in Km(A, r0) such that the residual vector is orthogonal

to Lm. Such a mathematical framework is also known as Petrov-Galerkin condition.

As in the GMRES method, we wish to exploit the knowledge of an initial guess solution

x0. The approximate solution xm is found in the affine subspace x0 + Km(A, r0) as in

equation (87) where y is chosen by imposing that:

rm = b−Axm ⊥ Lm (134)

Using (87), the orthogonality condition (134) depends explicitly on y:

r0 −Ay ⊥ Lm (135)

Let v1, v2, . . . , vm form a basis for Km(A, r0) and w1,w2, . . . ,wm a basis for Lm. Writing

y as in equation (106) the orthogonality condition (135) can be refomulated using the

basis wi:

wT
i (r0 −Ay) = 0 i = 1, . . . ,m (136)

Similarly to Vm, define Wm as the (n×m) matrix whose columns are the vectors wi. The

m conditions (136) now read:

W T
m (r0 −AVmz) = 0 (137)

Equation (137) defines a linear system in the unknown vector z. Assuming that the matrix

W T
mAVm is nonsingular, the approximate solution xm is:

xm = x0 + Vm
(

W T
mAVm

)−1
W T

mr0 (138)

The prototype for a general projection algorithm is the following:

Algorithm 8: Prototype Projection Method

1. Select a pair of subspaces Km(A, r0) and Lm

2. Do m = 1, . . . until convergence

3. Compute v1, v2, . . . , vm
4. Compute w1,w2, . . . ,wm

5. z =
(

WT
mAVm

)

−1
WT

mr0

6. xm = x0 + Vmz

7. End Do
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Algorithm 8 requires the selection of the space Lm. The most successful approach is

based on the use of the Krylov subspace associated with the transposed of A:

Lm
(

AT , r0
)

= span
{

r0, A
T r0,

(

AT
)2

r0, . . . ,
(

AT
)m−1

r0

}

(139)

A projection method where Km = Lm is called orthogonal. The iterative techniques devel-

oped using Lm as defined in (139) are therefore called nonorthogonal projection methods

onto Krylov subspaces.

Nonorthogonal projection methods have a number of appealing properties and are much used

in practice, however they are quite hard to analyze theoretically. In particular, it is not possible

to prove that the current solution xm is optimal in some sense, so these methods are intrinsically

less robust than CG and GMRES. Nevertheless, the experience shows that when these methods

converge they are generally faster than GMRES.

3.3 The Lanczos biorthogonalization algorithm

To make Algorithm 8 of practical interest, the linear system with matrix W T
mAVm should

be as easy to solve as possible. For example, it could be convenient to choose Vm and Wm

in such a way that the matrix W T
mAVm is tridiagonal, so that vector z can be conveniently

computed with the Thomas algorithm.

Let us compute the bases vi and wi for Km(A, r0) and Lm(AT , r0), respectively, so

that:

wT
i vj = δij (140)

where δij is the Kronecker delta. Two sequences of vectors satisfying the condition (140)

are said to be biorthogonal. Recalling equation (102), the bases for the Krylov subspace

associated to A and AT can be calculated with the following recurrences:

v̂k+1 = Avk −
k
∑

j=1

hjkvj (141)

ŵk+1 = ATwk −
k
∑

j=1

h̃jkwj (142)

The coefficients hjk and h̃jk are obtained by imposing the newly generated vectors v̂k+1

and ŵk+1 to be orthogonal to wj and vj , respectively, with j ≤ k. This condition leads

to:

wT
j v̂k+1 = wT

j Avk − hjkwT
j vj = 0 ⇒ hjk = wT

j Avk (143)

vTj ŵk+1 = vTj A
Twk − h̃jkvTj wj = 0 ⇒ h̃jk = vTj A

Twk (144)

Recall that all vectors at steps j ≤ k satisfy the hypothesis (140) by construction. As the

coefficients hjk and h̃jk have the same role as those in GMRES, they can be used to form
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the matrices H and H̃ both possessing a Hessemberg structure. Moreover, a quick look

to equations (143) and (144) shows that:

hjk = h̃kj ⇒ H = H̃T (145)

However, a Hessemberg matrix can equate the transposed of another Hessemberg matrix

only if it is tridiagonal. Therefore hjk = h̃kj = 0 for all indices j < k − 1 and equations

(141) and (142) simplify into efficient three-term recurrences. Setting:

αk = hk,k (146)

βk = hk−1,k (147)

δk = h̃k−1,k (148)

equations (141) and (142) become:

v̂k+1 = Avk − αkvk − βkvk−1 (149)

ŵk+1 = ATwk − αkwk − δkwk−1 (150)

The newly generated vectors v̂k+1 and ŵk+1 have to be scaled so that their scalar product

is 1. In other terms, we seek two scalars γv and γw:

vk+1 = v̂k+1/γv (151)

wk+1 = ŵk+1/γw (152)

such that:

wT
k+1vk+1 =

ŵT
k+1v̂k+1

γwγv
= 1 ⇒ γwγv = ŵT

k+1v̂k+1 (153)

Let us find the relationship existing between the scaling factors γv and γw and the co-

efficients of the three-term recurrences (149) and (150). Computing βk+1 and δk+1 we

get:

βk+1 = vTk+1A
Twk = vTk+1 (γwwk+1 + αkwk + δkwk−1) = γw (154)

δk+1 = wT
k+1Avk = wT

k+1 (γvvk+1 + αkvk + βkvk−1) = γv (155)

so that it is possible to update βk+1 and δk+1 immediately after the recurrences (149) and

(150). Putting all these relations together we obtain an algorithm for building a pair of

bi-orthogonal bases for Km(A, r0) and Lm(AT , r0). Such an algorithm is known as Lanczos

biorthogonalization:

Algorithm 9: Lanczos Biorthogonalization

1. Choose v1 and w1 such that wT
1 v1 = 1

2. Set β1 = δ1 = 0 and v0 = w0 = 0

3. Do k = 1, . . . ,m

4. αk = wT
kAvk

5. v̂k+1 = Avk − αkvk − βkvk−1

6. ŵk+1 = ATwk − αkwk − δkwk−1

7. Choose βk+1 and δk+1 such that βk+1δk+1 = ŵ
T
k+1v̂k+1

8. vk+1 = v̂k+1/δk+1

9. wk+1 = ŵk+1/βk+1

10. End Do

25



Note that theoretically there are infinite ways of defining βk+1 and δk+1 to accomplish the

condition in step 7 of Algorithm 9. The most usual choice is the following:

δk+1 = |ŵT
k+1v̂k+1|1/2 (156)

βk+1 = ŵ
T
k+1v̂k+1/δk+1 (157)

As a consequence of equations (156) and (157), the coefficients δk are always positive with βk = ±δk.

The main appeal of the Lanczos biorthogonalization algorithm stems from the fact

that it allows for expanding the size of Km(A, r0) and Lm(AT , r0) using only the last two

vectors of the basis. Therefore it is not necessary to store all the vectors vi and wi with

a huge memory saving as m increases. This is known as short-term recurrence. Moreover,

only the coefficients αk, βk and δk are required, instead of all hjk, i.e., three vectors in

place of a Hessemberg matrix. By contrast, there are more chances for the algorithm to

breakdown. Algorithm 9 will abort whenever the scalar product ŵT
k+1v̂k+1 is null, i.e.,

either v̂k+1 or ŵk+1 is the zero vector, or their inner product is zero even though v̂k+1

and ŵk+1 are both nonzero. The case v̂k+1 = 0 is a lucky breakdown, as in GMRES,

because it means that the subspace Km is invariant with A and the exact solution belongs

to Km. The case ŵk+1 = 0 means that the subspace Lm is invariant with AT . If a dual

system ATx∗ = b∗ is to be solved, this implies that we have reached the exact solution

x∗, but unfortunately nothing can be said for the linear system (1). By contrast, the case

ŵT
k+1v̂k+1 = 0 with both v̂k+1 and ŵk+1 nonzero is a serious breakdown and nothing can

be said again for both the original and the dual system.

The occurrence of a serious breakdown can be addressed using special Look-ahead Lanczos

algorithms which allow for computing the pair v̂k+2 and ŵk+2 even if vk+1 and wk+1 are not

defined. Unfortunately, the use of look-ahead strategies causes the loss of the short-term recurrences

in Algorithm 9 with a consequent larger storage requirement.

In finite precision, near breakdowns occurring when the inner product ŵT
k+1v̂k+1 is

small are potentially as dangerous as real breakdowns. It must be noted that, however,

such occurrences are generally quite rare and their effect is in most cases not dramatic.

3.4 Nonsymmetric Lanczos algorithms

Consider the recurrence (149) with equations (151) and (155) written for k = 1, . . . ,m:

Avk = βkvk−1 + αkvk + δk+1vk+1 k = 1, . . . ,m (158)

Recalling the definition of Vm and the reasoning that has led to equation (113), it can be

easily recognized that equations (158) are equivalent to the matrix relationship:

AVm = Vm+1Tm (159)
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where Tm is the (m+ 1)×m “quasi-tridiagonal” matrix:

Tm =



















α1 β2
δ2 α2 β3

· · ·
δm−1 αm−1 βm

δm αm

δm+1



















(160)

Let us define Tm as the m×m matrix obtained neglecting the last row of Tm. The product

on the right-hand side of (159) can be formally written also as:

Vm+1Tm = [Vm, vm+1]

[

Tm
δm+1i

T
m

]

= VmTm + δm+1vm+1i
T
m (161)

with im = [0, 0, . . . , 0, 1]T the canonical m-th reference versor of R
m. Premultiplying

equation (159) by W T
m, with the right-hand side given by equation (161), finally yields:

W T
mAVm = Tm (162)

where the biorthogonality of the vectors vi and wi has been exploited. Equation (162)

proves that the use of the Lanczos biorthogonalization algorithm to build the bases of Km

and Lm in a projection method leads to the solution of a tridiagonal system of incresing size

at each step of the algorithm. The matrix Tm can be also interpreted as the projection of

A onto Km and orthogonal to Lm. With the above relationships, the prototype Algorithm

8 now reads:

Algorithm 10: Two-Sided Lanczos

1. Compute r0 = b−Ax0
2. β = ‖r0‖2
3. Set v1 = r0/β and w1 = v1

4. Do m = 1, . . . until convergence

5. Compute v1, v2, . . . , vm and w1,w2, . . . ,wm with Algorithm 2

6. z = βT−1
m i1

7. xm = x0 + Vmz

8. End Do

Notice that the bases vi and wi play a dual role in the sense that TT
m could be interpreted as

the projection of AT onto Lm and orthogonal to Km. Since the main cost of Algorithm 10 relies

on the construction of the vectors vi and wi, with almost the same computational effort we could

obtain the solution of the dual system ATx∗ = b∗. It goes without saying that, in the frequent

case where the dual system does not exist, the operations with AT are essentially wasted.

3.4.1 Bi-Conjugate Gradient (Bi-CG)

The two-sided Lanczos algorithm can be made computationally more efficient fully exploit-

ing the short-term recurrence of Algorithm 9 which allows for the computation of the new
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vectors vk+1 and wk+1 using only two previous vectors of the sequences. Moreover, if the

tridiagonal system in step 6 is solved by the Thomas algorithm a new simple recurrence

can be constructed also for y.

Before developing the new algorithm, let us consider the recurrent relationships of the CG

method as described in Algorithm 3. Start with k = 0, obtaining:

x1 = x0 + α0r0 (163)

r1 = r0 − α0Ar0 (164)

p1 = (1 + β0) r0 − α0Ar0 (165)

Now use the relationships (163)-(165) to compute the new approximations for k = 1:

x2 = x0 + [α0 + α1 (1 + β0)] r0 − α1α0Ar0 (166)

r2 = r0 − [α0 + α1 (1 + β0)]Ar0 + α1α0A
2r0 (167)

p2 = [1 + β1 (1 + β0)] r0 − [α0 + α1 (1 + β0) + α0β1]Ar0 + α1α0A
2r0 (168)

Extending the equations above it can be easily inferred that at step m the current approximate

solution and the residual vector will have the form:

xm = x0 +

m
∑

i=1

ciA
i−1r0 (169)

rm =
m+1
∑

i=1

diA
i−1r0 (170)

with ci and di appropriate scalar coefficients. Equation (169) shows that the current solution xm is

actually obtained summing the initial guess x0 to a vector y that belongs to Km(A, r0). Recalling

that in the CG algorithm rm is orthogonal to all the previous residual vectors, equation (170) also

suggests that actually:

rm ⊥ Km (A, r0) (171)

because rj ∈ Kj+1(A, r0) for any j ≤ m− 1. In other words, CG can be viewed as an orthogonal

projection method where Km = Lm. Defining, as usual, a basis v1, v2, . . . , vm for Km(A, r0), the

current approximation xm can be formally written as in equation (138) with Vm =Wm:

xm = x0 + Vm
(

V T
mAVm

)

−1
V T
mr0 (172)

The projection matrix V T
mAVm is in the Hessemberg form and is symmetric, hence it is tridiagonal.

Thus, it can be concluded that CG is nothing but the two-sided Lanczos algorithm for the special

case of A = AT . The classical recurrent relations of CG in Algorithm 3 can be reconstructed from

Algorithm 10 by solving the inner tridiagonal system with the Thomas algorithm. Denote by T̃m
the matrix V T

mAVm. As A is positive definite, T̃m is too, hence a real Cholesky factorization exists:

T̃−1
m = L̃−T

m L̃−1
m (173)

with:

L̃m =















l11
l21 l22

· · ·
lm−1,m−2 lm−1,m−1

lm,m−1 lm,m















(174)
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Equation (172) can be written as:

xm = x0 + VmL̃
−T
m L̃−1

m βe1 = x0 + Pmam (175)

with Pm = VmL̃
−T
m and am = L̃−1

m βe1. Using the definition (174) of L̃m it is easy to verify that

the m-th column pm of Pm can be computed as:

pm =
1

lm,m

(

vm − lm,m−1pm−1

)

(176)

i.e., by a recurrent relation involving only the previous column pm−1 and the current basis vector

vm. Using the recurrence (176) we can write equation (175) as:

xm = x0 + [Pm−1,pm]

[

am−1

αm

]

= xm−1 + αmpm (177)

where we can recognize again the classical short-term recurrence of CG. It is also possible to verify

that the vectors pi have conjugate directions with respect to A. In fact:

PT
mAPm = L̃−1

m V T
mAVmL̃

−T
m = L̃−1

m T̃mL̃
−T
m = I (178)

Finally notice that a comparison of the recurrence (176) for the vectors pi with the corresponding

relationship in Algorithm 3 shows that the residual vectors ri are parallel to vi.

As shown above for the CG algorithm, using the Thomas algorithm to solve the tridi-

agonal system in Algorithm 10 yields a short-term recurrence. When A is nonsymmetric

the factorization (173) of Tm becomes:

T−1
m = U−1

m L−1
m (179)

and the new vectors pi are the columns of the matrix Pm = VmU
−1
m . A simple recurrent

relation similar to (176) can be again inferred. The residual vectors ri are still parallel to

vi, but now they are orthogonalized with respect to the sequence of wi. Because of the

dual role played by the bases vi and wi, we can define the residual r∗ of the dual system

ATx∗ = b∗ setting r∗i to be parallel to wi. A new set of p∗

i vectors related to the dual

system are consequently obtained as the column of the matrix P ∗

m = WmL
−T
m . It is easy

to prove that the vectors pi and p∗

i are mutually A-orthogonal:

(P ∗

m)T APm = L−1
m W T

mAVmU
−1
m = L−1

m TmU
−1
m = I (180)

The two-sided Lanczos algorithm with the decomposition (179) for the tridiagonal inner

system is therefore called Bi-Conjugate Gradient (Bi-CG) and was introduced by Fletcher

in 1976. It can be simply written as the CG adding the recurrent relationships for the

update of the dual vectors r∗i and p∗

i :
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Algorithm 11: Bi-Conjugate Gradient

1. Compute r0 = b−Ax0 and set r∗0 = r0

2. Set p0 = r0 and p∗

0 = r∗0
3. Do k = 0, . . . until convergence

4. αk = r∗k
T rk/r

∗

k
TApk

5. xk+1 = xk + αkpk

6. rk+1 = rk − αkApk

7. r∗k+1
= r∗k − αkA

Tp∗

k

8. βk = r∗k+1

T rk+1/r
∗

k
T rk

9. pk = rk+1 + βkpk

10. p∗

k = r∗k+1
+ βkp

∗

k

11. End Do

If a dual system has to be solved, it is possible to compute its solution simply adding to

Algorithm 11 the almost inexpensive recurrent relation:

x∗k+1 = x∗k + αkp
∗

k (181)

after computing the initial dual residual r∗0 = b∗ − ATx∗0. When, as is typically the case, a dual

system does not exist the computation of the dual vectors is practically wasted and the solution

to the native system by the Bi-CG algorithm is twice as expensive as that obtained with CG for

a symmetric matrix.

3.4.2 Bi-Conjugate Gradient Stabilized (Bi-CGStab)

The Bi-CG algorithm is not much used in practice. Its main drawbacks are twofold:

1. each step needs the implementation of the product of AT by a vector. This can be

particularly expensive when the explicit form of A is not available. Moreover, the

vectors computed with the use of AT do not contribute directly to the solution, but

are required only for the scalar coefficients αk and βk;

2. the convergence of Bi-CG proves typically quite erratic, with large oscillations of the

residual vector norm. With ill-conditioned matrices this may lead to a breakdown

due to the accumulation of rounding errors even though the underlying Lanczos

biorthogonalization algorithm does not abort.

The reason for the erratic Bi-CG convergence relies on the way the scalar coefficients αk and

βk are computed. Both factors need the inner product:

ρk = r∗k
T
rk (182)

Recalling equation (170), the residual vector at step k can be written as the product of a polynomial

of A with degree k by the initial residual r0:

rk = φk (A) r0 (183)
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As r∗k is computed with the same recurrence using AT in place of A it follows that:

r∗k = φk
(

AT
)

r∗0 (184)

Thus, the inner product ρk is actually equal to:

ρk = r∗0
T [φk

(

AT
)]T

φk (A) r0 = r∗0
Tφ2k (A) r0 (185)

Since the polynomial φk is squared the rounding errors in the computation of rk and r∗k are more

damaging. In particular, high oscillations of the residual norm can cause the Bi-CG algorithm to

become inaccurate.

A way to cope with such difficulties relies on stabilizing the erratic behaviour of the

squared polynomial φ2k(A) replacing it with the product ψk(A)φk(A), where ψk is another

polynomial with the aim of smoothing the oscillations of the residual norm. Define ψk(A)

as:

ψk (A) =
k−1
∏

j=0

(I − ωjA) = (I − ωk−1A)ψk−1 (A) (186)

and a new smoothed rk as:

rk = ψk (A)φk (A) r0 (187)

The current scalar ω is chosen so as to minimize the norm of the new smoothed residual

vector. Note that also the vector pk can be written as the product of another polynomial

πk(A) by r0. Recalling the standard recursion for rk in Bi-CG and equation (183), the

new vector rk+1 according to (187) reads:

rk+1 = (I − ωkA)ψk (A) [φk (A) r0 − αkAπk (A) r0] = (I − ωkA) sk (188)

where:

sk = rk − αkApk (189)

and pk is defined, similarly to rk, as the smoothed corresponding Bi-CG vector:

pk = ψk (A)πk (A) r0 (190)

Let us minimize ‖rk+1‖2 as a function of ωk only. Using equation (188) it follows that:

ωk =
sTkAsk

(Ask)
T Ask

(191)

Equation (188), with (189), can be re-written as:

rk+1 = sk − ωkAsk = rk − αkApk − ωkAsk (192)

Recalling that rk = b − Axk, equation (192) allows also for the update of the current

solution xk+1:

xk+1 = xk + αkpk + ωksk (193)
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We need also the recurrence for the smoothed pk defined in (190). Similarly to equation

(188), the new pk+1 reads:

pk+1 = (I − ωkA)ψk (A) [φk+1 (A) r0 + βkπk (A) r0] = rk+1 + βk (I − ωkA)pk (194)

Finally, we need the recurrences for updating βk and αk. Both scalars use the inner product

ρk defined in (185) which is not directly available as we avoid using squared polynomials.

Instead we can easily compute ρ̃k as:

ρ̃k = r∗0
Tψk (A)φk (A) r0 =

[

ψk

(

AT
)

r∗0
]T
φk (A) r0 = r∗0

T
rk (195)

To relate ρk with ρ̃k write the polymonials ψk

(

AT
)

and φk(A) as:

ψk

(

AT
)

=
k
∑

j=0

η
(k)
j

(

AT
)k−j

(196)

φk (A) =

k
∑

j=0

γ
(k)
j Ak−j (197)

and observe that because of the biorthogonalization property φk(A)r0 is orthogonal to all

vectors
(

AT
)i
r0 with i < k. Hence ρ̃k simplifies into:

ρ̃k = η
(k)
0 r∗0

TAkφk (A) r0 (198)

Now multiply and divide equation (198) by γ
(k)
0 and note that for increasing values of k

the polynomial φk can be well approximated by its leading term, i.e. φk(A) ≃ γ
(k)
0 Akr0.

Hence ρ̃k reads:

ρ̃k =
η
(k)
0

γ
(k)
0

r∗0
Tφ2k (A) r0 =

η
(k)
0

γ
(k)
0

ρk (199)

Recall the recurrent definition (186) of ψk. The leading coefficient η
(k+1)
0 can be inferred

from this relation, obtaining:

η
(k+1)
0 = −ωkη

(k)
0 (200)

The polynomial φk can be also defined by a short-term recurrence. Using the standard

relations for rk and pk of Bi-CG yields:

φk+1 (A) = φk (A)− αkAπk (A) = (I − αkA)φk (A)− αkβkAπk−1 (A) (201)

Hence the leading coefficient γ
(k+1)
0 reads:

γ
(k+1)
0 = −αkγ

(k)
0 (202)

Finally combining equations (199) with (200) and (202) gives the scalar coefficient βk:

βk =
ρk+1

ρk
=
γ
(k+1)
0

η
(k+1)
0

η
(k)
0

γ
(k)
0

ρ̃k+1

ρ̃k
=
ρ̃k+1

ρ̃k

αk

ωk

(203)
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The scalar αk can be deduced in a simpler way. By its definition we can write:

αk =
r∗0

Tφ2k (A) r0

r∗0
Tφk (A)Aπk (A) r0

(204)

Now we can replace φk at both the numerator and the denominator with ψk. As αk is a

ratio, its value does not change obtaining:

αk =
r∗0

Tψk (A)φk (A) r0

r∗0
TAψk (A)πk (A) r0

=
ρ̃k

r∗0
TApk

(205)

Putting all these relationships together we get the Bi-Conjugate Gradient Stabilized

(Bi-CGStab) algorithm developed by van der Vorst in 1992:

Algorithm 12: Bi-Conjugate Gradient Stabilized

1. Compute r0 = b−Ax0 and set r∗0 = r0

2. Set p0 = r0

3. Do k = 0, . . . until convergence

4. αk = ρ̃k/r
∗

0

TApk

5. sk = rk − αkApk

6. ωk = sTkAsk/ (Ask)
T
Ask

7. xk+1 = xk + αkpk + ωksk

8. rk+1 = sk − ωkAsk
9. ρ̃k+1 = r∗0

T rk+1

10. βk = ρ̃k+1αk/ρ̃kωk

11. pk+1 = rk+1 + βkpk − ωkβkApk

12. End Do

Notice that the Bi-CGStab algorithm succeeds in the twofold goal of stabilizing the erratic Bi-

CG convergence and avoiding the use of AT . This is why it is often referred to as a transpose-free

variant of Bi-CG. The cost per iteration is practically the same as Bi-CG involving two matrix-

vector products, but its smoother convergence makes it preferable also from a computational

viewpoint. Finally observe that, despite its non trivial derivation, Bi-CGStab is very easy to

implement also in a parallel environment, involving only short-term recurrences.

3.4.3 Quasi-Minimal Residual (QMR) algorithms

The two-sided Lanczos algorithm has given rise to a second class of iterative methods. The

main reason for developing a new class of algorithms stems from the fact that Bi-CG and

Bi-CGStab do not ensure any minimization property for the current approximate solution,

i.e., it could not be optimal in the current subspace. In other words, these methods may

lack in robustness since convergence is not theoretically guaranteed.

The basic idea relies on minimizing the current residual norm as is done in the GMRES

algorithm. Recalling equation (159) the current residual can be written as:

rm = r0 −AVmz = Vm+1

(

βi1 − Tmz
)

(206)
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where it has been assumed, as usual, that v1 = r0/β. The norm of the residual vector is

therefore:

‖rm‖2 = ‖Vm+1

(

βr1 − Tmz
)

‖2 (207)

i.e., a quadratic function of z which can be minimized. Contrary to GMRES, however, the

matrix Vm+1 cannot be neglected in the minimal norm computation since its columns are

no longer orthonormal. Nevertheless, it is still a reasonable idea to minimize the function:

J (z) = ‖βi1 − Tmz‖2 (208)

and compute the corresponding approximate solution xm = x0+Vmz. Such an approach is

denoted as Quasi-Minimal Residual (QMR) and was introduced by Freund and Nachtigale

in 1994. As the matrix Tm is tridiagonal, the solution to the resulting least-square problem

is much less expensive than in the GMRES algorithm, thus providing some computational

advantages. Moreover, using at each step a QR factorization of Tm to minimize J(z) it is

also possible to derive a short-term recurrence with a limited requirement of core memory.

Even though the residual norm is not actually minimized at each step, hence the current

approximate solution is not optimal in Km(A, r0), the experience shows that generally the

quasi-residual norm turns out to be close to the actual residual norm.

Among the QMR algorithms the transpose-free variant TFQMR has had some success in the

applications. The variant Symmetric Quasi-Minimal Residual (SQMR) for symmetric indefinite

matrices is even more successful. The key idea for SQMR is that it is possible to prove that the

sequence of vectors wi can also be computed recursively from the vi, with a significant acceleration

of the Lanczos algorithm.
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