

Laboratorio di Calcolo Numerico Laboratorio 9: Norme di vettori e matrici

06 Maggio 2019

Stampa di Vettori e Matrici

```
>> vettore = [1 2 3 4 5];
>> fprintf(1,'Vettore= %g %g %g %g %g \n', vettore);
>> matrice = [1 2 3; 4 5 6];
>> fprintf(1,'%g %g %g \n', matrice);
```

L'operatore :

L'operatore : permette di estrarre sotto-matrici da una matrice nota.

Esempio 1

```
>> A = [1 2 3 4; 5 6 7 8; 9 10 11 12];

>> C = A(:,1);

>> R = A(1,:);

>> C23 = A(:,2:3);

>> C14 = A(:,[1 4]);
```

Esempio 2

```
>> vert = [0 1 1 0; 0 0 1 1];

>> x = [vert(1,:) vert(1,1)];

>> y = [vert(2,:) vert(2,1)];

>> plot(x,y,'r');
```

Norme di vettori e matrici

Dato un vettore \mathbf{x} , la norma $\|\mathbf{x}\|$ ne rappresenta una "misura" per confrontare vettori diversi tra loro. Le norme più utilizzate sui vettori sono le seguenti:

- Norma Assoluta: $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
- Norma Euclidea: $\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n (x_i)^2}$
- Norma Massima: $\|\mathbf{x}\|_{\infty} = \max_{1 \leq i \leq n} |x_i|$

Norme di vettori e matrici

>> normainf = norm(x,inf);

Le norme possono essere calcolate in MATLAB come:

su	ım	sum(x) restituisce la somma di tutte le componenti di x	
		sum(A) restituisce un vettore riga con la somma degli elementi	
		di ciascuna colonna di A	
ma	ıx	max(x) restituisce la massima componente di x	
		$\max(\mathtt{A})$ restituisce un vettore riga con la massima componente delle colonne di A	
mi	n	vedi max	

```
>> norma1 = sum(abs(x));
>> norma2 = sqrt(sum(x.^2));
>> normainf = max(abs(x));

In pratica, le norme si possono calcolare con le seguenti function di MATLAB:
>> norma1 = norm(x,1);
>> norma2 = norm(x);
```

Norme di vettori e matrici

Le function precedenti possono essere utilizzate anche per il calcolo delle norme di matrici:

- \bullet Norma 1: $\|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n |a_{i,j}|$
- Norma 2: $\left\|A\right\|_2 = \sqrt{\lambda_1 \left(A^T A\right)}$
- Norma Inf: $\|A\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{i,j}|$

```
>> norma1 = norm(A,1);
>> norma2 = norm(A);
>> normainf = norm(A,inf);
```

Inoltre l'istruzione norm(A, 'fro') restituisce la norma di Frobenius della matrice A.

Funzioni utili di MATLAB

Funzioni MATLAB che consentono di costruire particolari matrici e vettori. Si consulti l'help per una descrizione dettagliata.

linspace	vettore riga di elementi equispaziati
zeros	matrice contenente solo elementi uguali a zero
ones	matrice contenente solo elementi uguali a uno
eye	matrice identità
diag	matrice diagonale
magic	matrice a valori interi con somme uguali su righe e colonne
tril e triu	estraggono la parte triangolare inferiore e superiore
inv	restituisce matrice inversa (applicazione a matrici quadrate)
det	restituisce il determinante di matrici quadrate
eig	per calcolare autovalori e autovettori di matrici quadrate