Mixed Hybrid Finite Element Method: an introduction
First lecture

Annamaria Mazzia

Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate
Università di Padova
mazzia@dmsa.unipd.it

Scuola di dottorato in
Scienze dell’Ingegneria Civile e Ambientale
Corso di Metodi Numerici
marzo 2008
Some observation on the Finite Element method
The Mixed Finite Element method
The Mixed Hybrid Finite Element method
Some properties of the method
Superconvergence results
Numerical implementation
Numerical results
It is well known that the classical Finite Element (FE) method minimizes the so-called energy functional in a well chosen space of admissible functions W.

$$\inf_{w \in W} J(w).$$

If the functional $J(\cdot)$ is differentiable, the minimum (whenever it exists) will be characterized by a variational equation.

The FE method is based on a few simple ideas:

- The domain $\Omega \subset \mathbb{R}^d$, $d = 2, 3$, in which the problem is posed, is partitioned into a set of simple subdomains, called elements.

- These elements may be triangles, quadrilaterals, tetrahedra.
A space W of functions defined on Ω is then approximated by *simple* functions, defined on each element with suitable matching conditions at interfaces. Simple functions are commonly polynomials or functions obtained from polynomials by a change of variables.

A FE method can only be considered in relation with a variational principle and a functional space. Changing the variational principle and the space in which it is posed leads to a different FE approximation, even if the solution for the continuous problem can remain the same.
In the Mixed Finite Element (MFE) method two different Finite Element spaces are used. Let us consider the simple elliptic equation:

\[-\nabla \cdot (D \nabla c) = f \quad \text{in } \Omega\]
\[c = 0 \quad \text{on } \partial \Omega\]

where $D = D(x)$ is the dispersion tensor, and c represents the concentration.

Introducing the dispersive flux \tilde{G}, we can write the Fick law,

\[\tilde{G} = -D \nabla c.\]

It could be desirable to approximate \tilde{G} and c simultaneously using a different Finite Element space for each variable.
With this purpose the elliptic problem is decomposed into a first order system as follows:

\[\tilde{\mathbf{G}} + D \tilde{\nabla} c = 0 \quad \text{in } \Omega \]
\[\tilde{\nabla} \cdot \tilde{\mathbf{G}} = f \quad \text{in } \Omega \]
\[c = 0 \quad \text{on } \partial\Omega \]

The first of the above equations can be written as

\[D^{-1} \tilde{\mathbf{G}} + \tilde{\nabla} c = 0 \quad \text{in } \Omega. \]
Multiplying by test functions and integrating by parts we obtain the following weak formulation

\[\int_{\Omega} D^{-1} \vec{G} \cdot \vec{w} \, d\Delta - \int_{\Omega} c \vec{\nabla} \cdot \vec{w} \, d\Delta = 0 \quad \forall \vec{w} \in H(\text{div}, \Omega) \]

\[\int_{\Omega} \psi \vec{\nabla} \cdot \vec{G} \, d\Delta = \int_{\Omega} f\psi \, d\Delta \quad \forall \psi \in L^2(\Omega) \]

where

\[H(\text{div}, \Omega) = \{ \vec{w} \in L^2(\Omega)^d : \vec{\nabla} \cdot \vec{w} \in L^2(\Omega) \} \]

Hilbert space

The weak formulation involves the divergence of the solution and test functions and not arbitrary first derivatives. Thus we work with the space \(H(\text{div}, \Omega) \) formed by piecewise polynomial vector functions with continuous normal component.
In order to define finite element approximations to the solution \((\vec{G}, c)\), we need to have finite element subspaces of \(H(\text{div}, \Omega)\) and \(L^2(\Omega)\).

Let \(T = \{T_i\}_{i=1}^m\) be a triangulation of \(\Omega\), i.e. \(\Omega = \bigcup_{T_i \in T} T_i\) with diameter \(\leq h\). The triangulation is admissible if the intersection of two triangles is either empty, or a vertex, or a complete side.

Thus, we have to construct piecewise polynomials spaces \(W_h\) and \(\Psi_h\) associated with \(T_i\) such that \(W_h \subset H(\text{div}, \Omega)\) and \(\Psi_h \subset L^2(\Omega)\).
The MFE approximation \((\tilde{G}_h, c_h) \in W_h \times \psi_h\) is defined by

\[
\begin{align*}
\int_{\Omega} D^{-1} \tilde{G}_h \cdot \vec{w} \, d\Delta - \int_{\Omega} c_h \nabla \cdot \vec{w} \, d\Delta &= 0 \quad \forall \vec{w} \in W_h \\
\int_{\Omega} \psi \nabla \cdot \tilde{G}_h \, d\Delta &= \int_{\Omega} f \psi \, d\Delta \quad \forall \psi \in \Psi_h.
\end{align*}
\]

In order to have stability and convergence \(W_h\) and \(\psi_h\) can not be chosen arbitrarily but they have to be related.

- We assume that
 \[
 \nabla \cdot W_h = \psi_h.
 \]

- Let \(\pi_2 \tilde{G}\) be the \(L^2\)-projection of \(\tilde{G}\) into \(\psi_h\). The following equality must hold:
 \[
 \int_{\Omega} \nabla \cdot (\tilde{G} - \pi_2 \tilde{G}) \psi \, d\Delta = 0 \quad \forall \tilde{G} \in H^1(\Omega)^d, \quad \forall \psi \in \Psi_h
 \]

where \(H^1(\Omega)\) is the Sobolev space \((H^1(\Omega) = \{v \in L^2(\Omega) : D^1 v \in L^2(\Omega) \quad D^1 v \text{ partial derivative}\})\).
We can state the following theorem:

Theorem

The problem of finding a pair of functions \((\vec{\mathcal{G}}, c) \in H(\text{div}, \Omega) \times L^2(\Omega)\) such that the weak form of the elliptic problem holds has a unique solution. In addition, \(c\) is the solution of the elliptic problem and \(\vec{\mathcal{G}} = -D\vec{\nabla}c\).

Proof is omitted.
Numerical implementation of the MFE method

A MFE scheme is given by defining the spaces W_h and Ψ_h approximating $W \subset H(\text{div}, \Omega)$ and $\Psi \subset L^2(\Omega)$ respectively. We use the Raviart-Thomas spaces defined on a generic element $T_l \subset \Omega$ as

$$RT_k = (P_k)^d + xP_k$$

where k is an integer ≥ 0 and P_k is the space of polynomials of degree $\leq k$.

The dimension of RT_k is given by

$$\dim RT_k = \begin{cases} (k + 1)(k + 3) & \text{for } d = 2 \\ \frac{1}{2}(k + 1)(k + 2)(k + 4) & \text{for } d = 3. \end{cases}$$
Lemma

For $\vec{w}_h \in RT_k$ the following relations hold:

$$\vec{\nabla} \cdot \vec{w}_h \in P_k$$
$$\vec{w}_h \cdot \vec{n}|_{\partial T_l} \in R_k.$$

where R_k is the polynomial space defined on the edges e_j of each element T_l:

$$R_k = \{ \phi : \phi \in L^2(\partial T_l), \phi|_{e_j} \in P_k, \forall e_j \}.$$
We consider the Raviart-Thomas space of degree zero, whereby the functions \vec{G} and c can be approximated by:

$$\vec{G} \simeq \tilde{\vec{G}} = \sum_{l=1}^{m} g_l \vec{w}_l$$

$$c \simeq \tilde{c} = \sum_{l=1}^{m} c_l \psi_l$$

where \vec{w}_l and ψ_l are vector and scalar basis functions. Since we are considering the RT_0 spaces, \vec{w}_l are first order polynomial of the type:

$$\vec{w}_l = \begin{pmatrix} ax + b \\ ay + c \end{pmatrix},$$

while ψ_l are P_0 polynomials equal to one on element T_i and zero elsewhere.
Lemma

Given a triangle T_l with edges e_j, $j = 1, 2, 3$, the following relationships hold for $\vec{w}_l \in W_h(T_l)$:

\[
\nabla \cdot \vec{w}_l \in P_0
\]
\[
\vec{w}_l \cdot \vec{n}_j \in R_0 \quad j = 1, 2, 3
\]

where \vec{n}_j is the outward normal to edge e_j of T_l and R_0 is the polynomial space defined on edge e_j of T_l as

\[
R_0 = \{ \phi : \phi \in L^2(\partial T_l), \phi|_{e_j} \in P_0, \forall e_j \}.
\]
Proof.

The first relation is very simple to prove:

\[\nabla \cdot \vec{w}_l = 2a \in P_0. \]

The second relation says that the restriction of \(\vec{w}_l \) to each of the edges of \(T_l \) coincides with a polynomial of degree zero, i.e. a constant. Let \(T_l \) be an element with nodes \(P_1 = (x_1, y_1), P_2 = (x_2, y_2), P_3 = (x_3, y_3) \). The normal to the edge \(e_1 = P_1P_2 \) is given by:

\[\vec{n}_l^1 = \begin{pmatrix} y_2 - y_1 \\ x_1 - x_2 \end{pmatrix}. \]
Noting that the line passing through the points P_1 and P_2 has equation:

$$x(y_2 - y_1) + y(x_1 - x_2) = x_1(y_2 - y_1) + y_1(x_1 - x_2),$$

the inner product $\vec{w}_i \cdot \vec{n}_i^l$ can be written as

$$\vec{w}_i \cdot \vec{n}_i^l = (ax + b)(y_2 - y_1) + (ay + c)(x_1 - x_2) = a[x_1(y_2 - y_1) + y_1(x_1 - x_2)] + b(y_2 - y_1) + c(x_1 - x_2) = \text{const.}$$
On each element T_i we choose the RT0 basis functions \vec{w}_i^j ($i = 1, 2, 3$) of the following form:

$$
\vec{w}_i^j = \begin{pmatrix}
 a_i^j x + b_i^j \\
 a_i^j y + c_i^j
\end{pmatrix}
$$

It is satisfied the following property (Kronecker property):

$$
\int_{e_{ij}} \vec{w}_i^j \cdot \vec{n}_i^j \, dS = \delta_{ij} = \begin{cases}
1 & \text{if } j = i \\
0 & \text{otherwise}
\end{cases}
$$

where \vec{n}_i^j is the outward normal to e_i.
We can now derive the coefficients a_i^l, b_i^l and c_i^l coefficients in the following way (for sake of simplicity, we will omit the sub- super- scripts l, i).

Given the triangle T_l with edges e_1, e_2, e_3 and nodes $P_1 = (x_1, y_1), P_2 = (x_2, y_2), P_3 = (x_3, y_3)$, the normal to edge $e_1 = P_1P_2$ is derived by:

$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$

that is $\alpha(x - x_1) + \beta(y - y_1) = 0$, where

$$\alpha = y_2 - y_1, \quad \beta = x_1 - x_2.$$

The normalized components of the normal to e_1 are then (with no consideration about inner or outward normal) :

$$n_x = \frac{\alpha}{\sqrt{\alpha^2 + \beta^2}}, \quad n_y = \frac{\beta}{\sqrt{\alpha^2 + \beta^2}}.$$
When imposing Kronecker property, we obtain the following result:

\[
\int_{e_i} \vec{\omega}^j \cdot \vec{n}^l \, dS = \int_{e_i} (ax + b)n_x + (ay + c)n_y \, dS = \\
a \int_{x_1}^{x_2} \left(x_1n_x + y_1n_y \right) \frac{1}{|n_y|} \, dx + \int_{x_1}^{x_2} \left(bn_x + cn_y \right) \frac{1}{|n_y|} \, dx = \\
a(x_1n_x + y_1n_y)\frac{|x_1 - x_2|}{|n_y|} + (bn_x + cn_y)\frac{|x_1 - x_2|}{|n_y|} = \delta_{ij}
\]

Since \(\frac{|x_1 - x_2|}{|n_y|} = \) is equal to
\[
\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{\alpha^2 + \beta^2}
\]
we obtain:

\[
\int_{e_i} \vec{\omega}^j \cdot \vec{n}^l \, dS = a(x_1\alpha + y_1\beta) + (b\alpha + c\beta) = \delta_{ij}
\]
The coefficients a, b, c are chosen by the 2D classical Galerkin functions, N_i, $i = 1, 2, 3$, whose gradients are normal to the edges e_{i+1} for $i = 1, 2$ while the gradient of N_3 is normal to e_1. They can be written as:

$$N_i = \frac{a_i + b_i x + c_i y}{2|T_i|},$$

where $|T_i|$ is the area of the triangle T_i that can be written as:

$$|T_i| = \frac{1}{2} \begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}.$$
In particular, the coefficients are:

\[
\begin{align*}
 a_1 &= \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix} \\
 a_2 &= -\begin{vmatrix} x_1 & y_1 \\ x_3 & y_3 \end{vmatrix} \\
 a_3 &= \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \\
 b_1 &= \begin{vmatrix} 1 & y_2 \\ 1 & y_3 \end{vmatrix} \\
 b_2 &= -\begin{vmatrix} 1 & y_1 \\ 1 & y_3 \end{vmatrix} \\
 b_3 &= \begin{vmatrix} 1 & y_1 \\ 1 & y_2 \end{vmatrix} \\
 c_1 &= -\begin{vmatrix} 1 & x_2 \\ 1 & x_3 \end{vmatrix} \\
 c_2 &= \begin{vmatrix} 1 & x_1 \\ 1 & x_3 \end{vmatrix} \\
 c_3 &= -\begin{vmatrix} 1 & x_1 \\ 1 & x_2 \end{vmatrix}
\end{align*}
\]
It is simple to see that, for example, for the edge e_1 the following relations hold:

$$\alpha x_1 + \beta y_2 = -a_3, \quad \alpha = b_3, \quad \beta = c_3$$

Thus

$$\int_{e_1} \vec{w}^j \cdot \vec{n}_1 \, dS = -a_3 \alpha + (b_3 b + c_3 c).$$

The unknowns are now the coefficients a, b, c of \vec{w}^j. Setting $j = 1$, from Kronecker property and substituting in the previous equation, we get:

$$-a_3 \alpha + b_3 b + c_3 c = 1$$
$$-a_1 \alpha + b_1 b + c_1 c = 0$$
$$-a_2 \alpha + b_2 b + c_2 c = 0$$

Note that $\sum_{i=1}^{3} b_i = \sum_{i=1}^{3} c_i =0$ and that $\sum_{i=1}^{3} a_i = 2|T_i|$.
The system gives the following relationship between a and $|T_i|$

\[-2|T_i|a = 1 \Leftrightarrow a = -\frac{1}{2|T_i|}.\]

Application of divergence theorem to $\int_T \nabla \cdot \mathbf{w}^1 \, dx \, dy$ assures that the value of a is the same along the three edges of T_i and is positive and equal to $\frac{1}{2|T_i|}$. Indeed

\[\int_T \nabla \cdot \mathbf{w}^1 \, dx \, dy = \int_{\partial T} \mathbf{w}^1 \cdot \mathbf{n} \, dS = \sum_{i=1}^{3} \int_{e_i} \mathbf{w}^1 \cdot \mathbf{n}^i \, dS = 1\]

But,

\[\int_T \nabla \cdot \mathbf{w}^1 \, dx \, dy = \int_T \left(\frac{\partial \mathbf{w}^1}{\partial x} + \frac{\partial \mathbf{w}^1}{\partial y} \right) \, dS = \int_T 2a \, dS = 2a|T_i|\]
Again, considering the first equation of the previous system and the measure of T_i, we obtain for \vec{w}^1:

$$b^I_1 = \frac{-x_3}{2|T_i|}, \quad c^I_1 = \frac{-y_3}{2|T_i|}. \quad \text{(1)}$$

Similarly, the coefficients for \vec{w}^2 and \vec{w}^3 are:

$$b^I_j = \frac{-x_{j-1}}{2|T_i|}, \quad c^I_j = \frac{-y_{j-1}}{2|T_i|}, \quad j = 2, 3 \quad \text{(2)}$$

while a^I_i does not change, $a^I_i = \frac{1}{2|T_i|}$. Observe that with this choice of basis for the V_h space, the components g_1, g_2 and g_3 of \vec{G}_i on the element T_i are the edge fluxes that is the velocity (or flux) along each edge of T_i.

A. Mazzia (DMMMSA) MHFE method a.a. 2007/2008 24 / 24